
Breaking and Fixing Content-Defined Chunking
Kien Tuong Truong

kientuong.truong@inf.ethz.ch

ETH Zurich

Zurich, Switzerland

Simon-Philipp Merz

research@simon-philipp.com

ETH Zurich

Zurich, Switzerland

Matteo Scarlata

matteo.scarlata@inf.ethz.ch

ETH Zurich

Zurich, Switzerland

Felix Günther

mail@felixguenther.info

IBM Research Europe – Zurich

Rüschlikon, Switzerland

Kenneth G. Paterson

kenny.paterson@inf.ethz.ch

ETH Zurich

Zurich, Switzerland

Abstract

Content-defined chunking (CDC) algorithms split streams of data

into smaller blocks, called chunks, in a way that preserves chunk

boundaries when the data is partially changed. CDC is ubiqui-

tous in applications that deduplicate data such as backup solutions,

software patching systems, and file hosting platforms. Much like

compression, CDC can introduce leakage when combined with en-

cryption: fingerprinting attacks can exploit chunk length patterns

to infer information about the data.

To address these risks, many systems—mainly in the cloud backup

setting—have developed bespoke mitigations by mixing a cryp-

tographic key into the chunking process. We study these keyed

CDC (KCDC) schemes “in the wild”, presenting efficient key recov-

ery attacks against five different KCDC schemes, deployed in the

backup solutions Borg, Bupstash, Duplicacy, Restic, and Tarsnap.

Our attacks are in a realistic threat model that relies only on weak

known- or chosen-plaintext capabilities. This shows, in particular,

that they fail to protect against fingerprinting attacks. To demon-

strate practical exploitability, we also present “end-to-end” attacks

on three complete encrypted backup applications, namely Borg,

Restic and Tarsnap. These build on our attacks on the underlying

KCDC schemes.

In an effort to tackle these problems, we introduce the first for-

mal treatment for KCDC schemes and propose a provably secure

construction that fulfills a strong notion of security. We benchmark

our construction against existing (broken) approaches, showing

that it has competitive performance. In doing so, we take a step to-

wards making real-world systems that rely on KCDC more resilient

to attacks.

1 Introduction

Today, more than ever, users store and communicate vast amounts

of data. Minimizing network bandwidth and storage space is essen-

tial: data deduplication—checking for duplicates in data and storing

or transmitting those only once—helps achieve that, particularly

when it comes to large and redundant datasets.

Traditionally, deduplication is done on a per-file level. Chunking

up data (i.e., splitting it into smaller blocks) before deduplication,

and then deduplicating at the level of chunks rather than entire

files however greatly improves efficiency: Chunk deduplication can

reduce storage by up to 49% [11] on virtual machine image datasets,

and by up to 83% for backup workloads [19].

Content-defined chunking. The most näive approach to chunk-

ing is to split data into fixed-size chunks. Fixed-size chunking has

the disadvantage that the insertion or deletion of a single byte

shifts all of the subsequent data, causing all later chunks to change,

thus preventing efficient deduplication. For this reason, many ap-

plications resort to content-defined chunking (CDC). With CDC,

the boundary of a block is not pre-determined, but dynamically

computed depending on the data itself: a chunking scheme scans

through the data’s bytes, using only a small byte window to decide

whether to cut a chunk at a given position. This means that if a

byte is inserted or deleted at some point in a data sequence, the

boundaries of most chunks before and after the modification will

(with high probability) not change: only the affected chunk will

grow or shrink in size.

CDC in the wild. CDC is used everywhere: its effectiveness

makes it the tool of choice for many applications, ranging from

backup solutions such as Borg [6], Bupstash [8], Duplicacy [18],

Restic [25], and Tarsnap [34], to the League of Legend software

patcher [35], the HuggingFace backend [12] and the IPFS distributed

file system [15]. CDC schemes are typically implemented using

lightweight hash functions having some algebraic structure, such

as polynomial hashes. This allows not only efficient computation

of hash values, but also efficient updating of the hash value in a

“rolling” fashion, one byte at a time.

Fingerprinting attacks. Consider the common setting of file

backups outsourced to an untrusted cloud server, such as chat

message history or medical document folders. For privacy-sensitive

data like this, client-side encryption is used with the expectation

that the cloud server then cannot learn information about the data

being stored.

However, if the files are chunked using CDC, the length of each

chunk will depend on its content. Since most encryption algorithms

do not (fully) hide the length of plaintexts, if encryption is applied

at the chunk level (as is typically the case), then the length of the

encrypted chunks can leak information about the plaintext data

being chunked. While full recovery of plaintext data from this

leakage is challenging, fingerprinting attacks can be much easier to

mount. The idea is that the vector (or just the set) of chunk lengths

for a file may provide a fingerprint that uniquely identifies the file

amongst a set of files known to the adversary. This would enable

the adversary to check whether, for instance, a particular target file

is present in a backup or not. Fingerprints can also be helpful if only

part of the data is known: if the unknown part is small enough, the

adversary can enumerate all possibilities for the unknown part and

use the resulting chunk sizes as a fingerprint to determine whether

a guess was correct or not.

https://orcid.org/1234-5678-9012


Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

Fingerprinting attacks were first systematically explored in the

CDC context in [28]. They are, of course, analogous to other forms

of fingerprinting attacks, e.g. on encryptedweb traffic [9, 32] and the

setting is broadly similar to that of compression side channels [16,

29], where the length of the ciphertext after a compression-then-

encryption operation leaks some information that can be used to

recover plaintext.

Keyed content-defined chunking. The danger of fingerprint-

ing attacks in the context of CDC is well understood in the de-

veloper community. Indeed, many applications use bespoke CDC

schemes whose behavior depends on secret inputs. We dub these

keyed content-defined chunking (KCDC) schemes. Using a key nec-

essarily limits the benefits of deduplication after KCDC to the set of

parties with access to the key. Nevertheless, KCDC schemes are now

used in most major encrypted backup software: notably Borg [6],

Bupstash [8], Duplicacy [18], Restic [25], and Tarsnap [34] all have

their own, distinct keyed chunking implementations.

Breaking KCDC. Most of these keyed chunking schemes we

find “in the wild” are the result of adapting existing unkeyed CDC

schemes, applying folklore mitigations in order to make them keyed

while preserving their performance. The resulting designs are, how-

ever, cryptographically unprincipled, and rely on unclear or un-

stated assumptions for their security. Indeed, no formal security

notion for KCDC has been proposed in the literature, so it is not

even precisely defined what “security” should mean in the context

of KCDC.

Here, we show that KCDC constructions used in practice can

be broken in a realistic threat model: an adversary who can ob-

serve the chunking fingerprint for a single known file (and in one

case, Tarsnap, a single chosen file) can recover the key of the KCDC

scheme. Thereafter, the adversary can carry out standard finger-

printing attacks. Such an adversary could be situated on the net-

work between a client and a cloud server, or could be based at the

server itself. Since each of the KCDC schemes we look at involves

a different approach, we require a bespoke analysis for each one.

Specifically, based on their popularity and diversity of approaches,

we analyzed the five different KCDC schemes in the backup solu-

tions Borg, Bupstash, Duplicacy, Restic, and Tarsnap.

Breaking applications using KCDC. While we show that it

is possible to break KCDC schemes in isolation, our attacks may

not always be exploitable in the wider, “end-to-end” setting of

the applications using these KCDC schemes. In particular, KCDC

is typically used in combination with subsequent compression,

padding, encryption and other features that could negate attempts

to carry out end-to-end attacks. This raises the question of whether

our attacks on KCDC schemes are actually meaningful in practice.

To answer this question, we present full attacks against the Borg,

Restic and Tarsnap systems. These build on our attacks on their

underlying KCDC schemes, showing that their weaknesses do allow

us to run fingerprinting attacks against the full systems and not just

the standalone KCDC schemes, albeit requiring some assumptions

on how the backup is created. We also briefly explain how various

features frustrate our attacks on the other systems, pointing towards

possible attack countermeasures.

Fixing KCDC. Our attacks demonstrate that unprincipled, folk-

lore mitigations used to turn unkeyed CDC schemes into keyed

ones are error-prone and often insecure. This calls for a principled

approach to KCDC, which we initiate through the first formal treat-

ment of such schemes and their security. We propose strong game-

based security notions for KCDC, which guarantee that chunking

fingerprints do not leak information about underlying data. We also

present a provably secure construction for an efficient chunking

scheme, which we benchmark against the state-of-the-art KCDC

schemes “in the wild”. Our construction is based on the composition

of a polynomial hash function, which acts as a universal hash func-

tion (UHF) with a rolling property, and a block cipher (e.g. AES),

which acts as a PRF. Since many schemes already rely on a polyno-

mial hash function, we only incur a minimal overhead of one block

cipher evaluation per update operation. This makes our construc-

tion reasonably competitive with existing (broken) KCDC schemes,

thanks to widespread support for AES instructions in hardware. We

also show that the hash function used in Restic is already universal

(with a certain collision probability of about 2
−44

) meaning that

Restic can be directly repaired simply by post-processing its hash

values with, say, AES.

1.1 Our Contributions

In this work, we contribute the following novel results:

• We analyze a sample of five different systems using keyed

content-defined chunking (KCDC), focusing on those which

employ mitigations to thwart fingerprinting attacks. We

show that, in each case, these mitigations are insufficient.

More precisely, we show that an adversary who knows the

chunking behaviour on a single known or chosen file can

recover the key of the KCDC scheme. After this, standard

fingerprinting attacks become possible again. We also show

that our attacks on KCDC do extend to attacks on deployed

systems in three cases: Borg, Restic and Tarsnap.We discuss

barriers to extending our attacks for other systems.

• We provide the first formal treatment of KCDC schemes.

We propose and relate strong game-based security notions

for KCDC. These guarantee that the chunking fingerprint

does not leak information about underlying data, beyond

what is necessarily revealed by the deterministic nature of

KCDC schemes (e.g., the possible repetition of complete

chunks through equality of chunk sizes). We discuss to

what extent this definition protects against fingerprinting

and other forms of attack.

• Finally, we present a provably secure, efficient construc-

tion for a KCDC scheme. Our construction is based on a

“standard” PRF construction: apply a Universal Hash Func-

tion (UHF) to a window of data, then a PRF (instantiated

using a truncated block cipher for efficiency), and chunk

based on whether the PRF output is the zero string or not.

The overhead of our construction as compared to existing

(but broken!) KCDC schemes “in the wild” is one block ci-

pher call per byte of processed data. In practice, this does

lead to a reduced throughput. For example, applying our

construction on top of the Restic hash function reduces

throughput by 53%–165% in our measurements. However,

we consider this to be a reasonable price to pay for gaining

a cryptographically sound KCDC scheme.



Breaking and Fixing Content-Defined Chunking

1.2 Related Work

Content-defined chunking. Due to its efficiency properties,

CDC has been widely studied in the literature and is used in many

deployed systems. On the academic side, the Low-Bandwidth File

System (LBFS) [20] was the first to introduce the technique. Other,

more recent, proposals harness CDC to reduce the data footprint

of encrypted Docker images [33] or to optimize cloud storage sys-

tems [38]. These two works, despite operating on encrypted data,

fail to consider leakage from the chunking algorithm.

The literature on algorithms for CDC is rich, with works such

as [36] and its successive improvements in [21, 37, 39]. These

present a variety of chunking algorithms optimized for data through-

put. These works focus on efficiency and do not consider security.

Deduplication. There is a significant amount of research on and

deployment of deduplication schemes for cloud storage systems,

but much of this work considers deduplication at the file level, and

does not treat CDC, i.e., deduplication below the level of files. The

works [4, 7] lay formal cryptographic foundations for cloud storage

systems with deduplication and analyse industry-wide practices

such as convergent encryption as introduced in [10].

Fingerprinting attacks. Fingerprinting as a general attack class

of course goes well beyond CDC. For example, [9, 14, 23] study

website fingerprinting attacks in anonymity networks like Tor, us-

ing statistical methods to predict websites from traffic features such

as include packet size, but also cover timing information, direction-

ality, and number of packets. Gellert et al. [13] study fingerprinting

based solely on message length on a number of real-world datasets,

and propose the use of length-hiding encryption as mitigation.

In the specific setting of CDC, Ritzdorf et al. [28] study finger-

printing attacks on storage systems. Their analysis does not treat

keyed CDC schemes. Their focus is on quantifying the information

leakage of such schemes. This is done by estimating the number of

distinct fingerprints via a statistical model and then experimenting

with their own CDC scheme based on Rabin hashing. In contrast,

we study specific, deployed, keyed CDC schemes, showing practical

key recovery attacks on both the KCDC schemes in isolation and on

their usage in real systems. In turn our attacks enable fingerprint-

ing attacks like those studied in [28]. We also introduce a formally

sound approach to building KCDC schemes and provide an instanti-

ation and comparison with state-of-the-art KCDC schemes, a topic

not addressed in [28].

Attacks on KCDC Schemes. While contacting the developers of

Tarsnap, we learned that an Alexeev, Percival, and Zhang indepen-

dently discovered similar attacks in 2023, which was made public

on 22 Mar 2025 [2]. Our work has been developed independently

of theirs, and we have not had access to their paper prior to our

disclosure. We have, however, had the opportunity to discuss our re-

sults with them and to contribute opinions to their suggested fixes.

With respect to their attacks, we include a more performant key-

recovery attack on Borg and Restic, alternative attacks on Tarsnap,

and additional attacks on Duplicacy and Bupstash, which were not

covered in their paper.

1.3 Ethical Considerations

We disclosed our findings to the developers of Borg, Bupstash,

Restic, and Tarsnap on 9 Jan 2025, proposing a 60-day non-disclosure

period. The author of Tarsnap responded on 10 Jan 2025, stating that

they had been notified of similar issues and later released a preprint

version of a paper containing independent work on fingerprinting

attacks [2]. Version 1.0.41 of Tarsnap includes a targeted fix which

makes both our attacks and the attacks described in their paper

infeasible. The author of Borg responded on 3 Mar 2025, acknowl-

edging our results and discussing the difficulty of implementing

fixes in the current version of Borg. The authors of Restic and of

Bupstash also acknowledged our results, both on 16 Mar 2025. We

did not contact the developers of Duplicacy, as they already guard

against fingerprinting attacks by padding chunks to a multiple of

256 bytes. While the core KCDC scheme they propose is insecure

on its own and their mitigation is not provably secure, the padding

prevented us from developing a full attack on Duplicacy. We discuss

the effectiveness of this mitigation in Section 5.

1.4 Structure of the Paper

The remainder of the paper is organised as follows. In Section 2 we

give basic definitions and further background. Section 3 describes

our threat model and justifies our adversarial assumptions, and

then presents our attacks against the five different KCDC schemes.

In Section 4 we give our formal security definitions for KCDC,

along with our construction and a proof of its security. We also

report benchmarking results there. In Section 5 we explain how our

attacks for standalone KCDC schemes extend to the system level.

We also discuss how our security definition should be interpreted,

as well as its limitations. Section 6 provides our final conclusions.

2 Background

2.1 Notation and Conventions

Ordered lists are denoted with square brackets and have a method

ℓ .append (𝑥) which adds 𝑥 as the last element of the list ℓ . For a byte

string 𝑠 ∈ {0, . . . , 255}∗, we denote by |𝑠 | the length of 𝑠 in bytes. For
both lists and byte strings, we use 𝑥 [𝑖] to denote the 𝑖-th element

of 𝑥 , starting from 0 and we use slice notation 𝑥 [𝑖 : 𝑗] to denote the
sub-list (resp. the substring) of 𝑥 from index 𝑖 to 𝑗 (exclusive). If 𝑖

(resp. 𝑗 ) is omitted it takes the value 0 (resp. |𝑥 |). Slices can also take

negative indices: for 0 ≤ 𝑗 ≤ 𝑖 ≤ |𝑥 |, 𝑥 [−𝑖 : − 𝑗] = 𝑥 [|𝑥 | − 𝑖 : |𝑥 | − 𝑗].
We denote by 𝑥 | |𝑦 the concatenation of two byte strings 𝑥 and 𝑦.

Return values of probabilistic algorithms are denoted by ←$,

while the output of deterministic algorithms is indicated using←.

We also use 𝑥 ← 𝑦 to denote that we assign the value from the

right-hand side to the variable 𝑥 .

For any bit-guessing security game 𝐺 and adversary A, we

denote by Pr[𝐺] the probability that A outputs 0 as its guess in 𝐺 .

We will use the following lemma (from [5, Thm. 4.7]):

Lemma 2.1 (Difference Lemma). Let 𝑍 ,𝑊0,𝑊1 be events defined

on the same probability space. Suppose𝑊0 ∧ ¬𝑍 occurs if and only if

𝑊1 ∧ ¬𝑍 occurs. Then |Pr[𝑊0] − Pr[𝑊1] | ≤ Pr[𝑍 ] .

2.2 Keyed Content-Defined Chunking

A chunking scheme is usually applied to big files or blobs of data,

in order to split up, or chunk, the file into smaller chunks, which

can then be stored, manipulated, or transmitted over the network

more easily. Here we give a formal definition of chunking schemes,



Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

and position our definition with respect to how chunking schemes

are used in practical applications.

We focus mostly on keyed content-defined chunking (KCDC)

schemes – schemes where the position of the chunk boundary

depends on the data being chunked and a key – and give a general

treatment. Unkeyed chunking schemes can be seen as a particular

case where the key is fixed and public.

Definition 2.2 (Keyed content-defined chunking scheme). A chunk-

ing scheme Chk = (Chk.KGen,Chk.Init,Chk.Update,Chk.Eval) is
a tuple of algorithms, where:

• 𝐾 ←$ Chk.KGen() is the key generation algorithm out-

putting a key 𝐾 .

• 𝜎 ← Chk.Init(𝐾) is the initialization algorithm, outputting

an initial state 𝜎 on input a key 𝐾 .

• 𝜎 ′ ← Chk.Update(𝐾, 𝜎, 𝐵) on input a key 𝐾 , the current

state 𝜎 , and the next byte 𝐵 ∈ {0, . . . , 255} of the to-be-

chunked data, outputs an updated state 𝜎 ′.
• 0/1 ← Chk.Eval(𝐾, 𝜎) on input a key 𝐾 and the current

state 𝜎 , outputs a bit 𝑏 ∈ {0, 1} indicating the chunking

decision at the current position.

Concretely, an application using a KCDC scheme would read

the input data byte-by-byte, feeding each byte to Update, and then

using Eval to decide whether to insert a chunk boundary after each

byte is processed. We denote by 𝜎 ′ ← Chk.Update∗ (𝐾, 𝜎, data) the
state 𝜎 ′ obtained by repeated calls to Chk.Update with every byte

of data ∈ {0, ..., 255}∗ in order, starting from the initial state 𝜎 .

Since chunks are the basic unit of data for further processing

(e.g., for deduplication), their average length must be appropriately

chosen as part of the design of a chunking scheme. For deduplica-

tion, chunks should be small enough to have a good probability of

being repeated in different files, but not too small that overhead

becomes an issue. The specific value depends on the application,

but is usually in the order of megabytes; we will make the choices

of the schemes we analyze explicit.

Our definition yields a canonical way of chunking a sequence

of bytes, as shown in Fig. 1. Let Chk be a KCDC scheme and let K

be the key output by a call to Chk.KGen. We define a function 𝑓Chk
that given as input some data ∈ {0, . . . , 255}∗, chunking parameters

(minL,maxL), and K, outputs a sequence of chunks (𝑐0, . . . , 𝑐𝑛),
such that 𝑐0 | | . . . | |𝑐𝑛 = data and minL ≤ |𝑐𝑖 | ≤ maxL,∀0 ≤ 𝑖 < 𝑛.

That is, each chunk (except the last) has a minimum size of minL

bytes and a maximum size of maxL bytes. We call 𝑓Chk (data,minL,

maxL,K) the chunked view of data.

All the applications we surveyed share similar implementations

of 𝑓Chk: the minimum chunk size is not guaranteed by the chunking

scheme itself, but rather by skipping the minL bytes of data and

then invoking the chunking scheme until either Chk.Eval returns 1

or maxL bytes have been processed, as captured by 𝑓Chk in Fig. 1.

3 Key Recovery Attacks

In this section, we present our attacks on five keyed content-defined

chunking (KCDC) implementations deployed in Borg [6], Bup-

stash [8], Duplicacy [18], Restic [25], and Tarsnap [34]. They all

apply their own, distinct folklore mitigations to existing, unkeyed

chunking schemes to prevent fingerprinting attacks, and we ac-

cordingly require a bespoke analysis for each system. The goal our

𝑓Chk (data,minL,maxL,K):
1 𝑖 ← 0; 𝑗 ← minL

2 𝑐 ← []
3 While 𝑗 < |data|:
4 𝜎 ← Chk.Init(K)
5 While 𝑗 < |data| ∧ 𝑗 < maxL ∧ Chk.Eval(𝐾, 𝜎) = 0:

6 𝜎 ← Chk.Update(K, 𝜎, data[ 𝑗])
7 𝑗 ← 𝑗 + 1
8 𝑐.𝑎𝑝𝑝𝑒𝑛𝑑 (data[𝑖 : 𝑗])
9 𝑖 ← 𝑗 ; 𝑗 ← 𝑗 +minL

10 If 𝑖 < |data|:
11 𝑐.𝑎𝑝𝑝𝑒𝑛𝑑 (data[𝑖 : 𝑗])
12 Return 𝑐

Figure 1: Canonical chunking implementation of 𝑓Chk.

attacks achieve however is always the same: to recover the key used

for chunking, showing that these mitigations are not effective. In-

deed, once an attacker has recovered the key via our attacks, it can

carry out the standard fingerprinting attacks that these schemes

intended to prevent.

Our attacks on the folklore mitigations work in a realistic threat

model, and are possible if an adversary can observe the chunking

fingerprint for a certain amount of data, possibly a single file. This

includes both network adversaries, observing traffic between a

client and a cloud server, as well as the cloud server itself being

malicious. In all but one case, the adversary merely needs to know

the data content (i.e., the attacks are known-plaintext ones); only

in the case of Tarsnap does the attack require a chosen plaintext.

All known-plaintext attacks merely require the data contents to

be “independent enough” (i.e., non-redundant), so that the attacker

can actually observe sufficiently many distinct chunks. We deem

such known-plaintext attacks to be very viable in cloud backup

settings, where user backups regularly include large amounts of

known data (e.g., system files). Similarly, a malicious cloud server

can plausibly even mount a chosen-plaintext attack, e.g., by sending

the user some files which are stored and automatically included

in a backup. Notably, we will show through our construction in

Section 4 that these (and even stronger) attacks can be avoided with

minimal overhead, through a principled cryptographic design.

3.1 Borg

Borg’s chunking scheme is based on Buzhash [6], a simple rolling

hash which is widespread in unkeyed CDC implementations.

Buzhash operates over the quotient ring 𝑅 ≔ F2 [𝑥]/(𝑥32 + 1).
Note that, in this ring, every element can be seen as a 32-bit string,

with bits corresponding to polynomial coefficients. In 𝑅, summing

or subtracting two elements corresponds to the XOR of their bit-

representations, while multiplying by 𝑥 corresponds to a bit ro-

tation to the left (due to the equivalence 𝑥32 = 1). Borg creates a

secret mapping 𝜙𝐾 : {0, . . . , 255} → 𝑅 from bytes to ring elements

at initialization of the local backup. This mapping is created by

composing a public and fixed mapping𝜓 : {0, . . . , 255} → F32
2

with

a secret key 𝐾 ∈ 𝑅: 𝜙𝐾 (𝑏) ≔ 𝜓 (𝑏) + 𝐾 .



Breaking and Fixing Content-Defined Chunking

Table 1: Summary of the attacks on the various backup systems we considered. When not explicitly noted otherwise, we

consider the default parameters for chunking algorithm, compression settings and padding. Plaintext access ranges from none

( ), to known-plaintext ( ) and chosen plaintext ( ). The attacks are either tested (in red) or theoretical (in yellow).

Kopia (unkeyed) v0.18.2 ✓ ✓ 0 2MiB Buzhash s2-default none

v1.4.0 ✓ 1 none

Borg (§3.1)

(obfs L1)
✓

( ✓) (∼10) 2MiB Buzhash (secret offset) lz4

(random-%)

Bupstash (§3.2) v0.12.0 ✓ ✓ ∼1000 2MiB GearHash (secret table) zstd none

Duplicacy (§3.3) v3.2.4 ✓ ✗ ∼745 4MiB Buzhash (secret table) lz4 multiple of 256

≤ v0.14.0 ✓ ∼492 none none

Restic (§3.4)

v0.15.2

✓
✗ n/a

1MiB Rabin-hash (secret field)

zstd none

Tarsnap (§3.5) v1.0.40 ✓ ✓ 5 + ∼3 · 254 64 KiB Rabin-like (secret mapping) zlib none

Version

CDC Key

Recovery

E2E

Attack

Ptxt

Access

Chunks

Required
𝜆

CDC

Algorithm

Compression Padding

The state of the Buzhash scheme consists of a hash value 𝑠 ini-

tialized to 0 ∈ 𝑅 and a queue 𝑄 with 4095 positions containing all

bytes in the current sliding window. Then, for each ingested byte 𝑏,

𝑠 is updated as 𝑠 ← (𝑠 − 𝜙𝐾 (𝑄 [0]) · 𝑥31) · 𝑥 + 𝜙𝐾 (𝑏), where 𝑄 [0]
is the byte leaving the window and 𝑄 is updated accordingly by

appending 𝑏. A chunk is cut if the lowest 21 bits of 𝑠 are all 0.

Let (𝑏0, . . . , 𝑏4094) be a sliding window that caused chunking.

This implies that

4094∑︁
𝑖=0

𝜙𝐾 (𝑏𝑖 ) · 𝑥 (4094−𝑖 ) mod 32
mod 𝑥21

=

4094∑︁
𝑖=0

(
𝜓 (𝑏𝑖 ) · 𝑥 (30−𝑖 ) mod 32 + 𝐾 · 𝑥 (30−𝑖 ) mod 32

)
mod 𝑥21 = 0,

where the left part of the summand is publicly known under a

known-plaintext assumption.

Due to the fact that 4094 = 127 · 32 + 30, each power 𝑥 𝑗 for

𝑗 ∈ [0, 30] appears an even number of times (128 times, specifically)

which then get cancelled out completely, while 𝑥31 appears 127

times. This implies that the sum above can be simplified to

4094∑︁
𝑖=0

(
𝜓 (𝑏𝑖 ) · 𝑥 (30−𝑖 ) mod 32

)
+ 𝐾 · 𝑥31 mod 𝑥21 = 0.

It is then trivial to recover the lowest 21 bits of 𝐾 from a known

plaintext of a single chunk (i.e. 2 MiB on average). Since we are not

given the higher bits of the hash, we cannot recover the full key.

However, this is not needed: only the lowest 21 bits of 𝐾 contribute

to the chunking decision. As a consequence, the effective entropy

of the secret is only 21 bits. We have implemented this attack on a

Borg repository with a known plaintext and successfully recovered

the secret key.

3.2 Bupstash

The Bupstash chunking scheme is based on GearHash [37]. At

initialization, Bupstash samples a 32-byte key𝐾 , which is then used

in a cryptographic pseudo-random number generator to create

a secret mapping 𝜙 : {0, . . . , 255} → Z/232Z from bytes to 32-bit

strings, to be interpreted as elements of the ring of integers modulo

2
32
. For optimization purposes, the version used by Bupstash is an

interleaved variant which reads the file 8 bytes at a time, computing

8 GearHashes in parallel, one for each byte: the 𝑖-th instance of

GearHash will ingest bytes 𝑖, 𝑖 +8, 𝑖 +16, . . . of the file. GearHash, as
used by Bupstash, is a rolling hash function that maintains a 32-bit

state, initialized at 0, and ingests bytes one at a time, operating over

Z/232Z. The state is updated with a new byte 𝑏 by shifting the state

by one bit to the left (equivalent to multiplying by 2) and adding

the value of 𝜙 (𝑏). It is immediate to see that only the last 32 bytes

processed contribute to the hash.

The chunking condition is then evaluated for each hash output

by checking whether the 21 leading bits of the hash are all 0 (equiv-

alent to the hash representing a number smaller than 2
11
). A chunk

boundary is created if any of the hashes fulfills this condition, in

which case the boundary is created at the position of the byte that

was ingested by the GearHash instance that triggered chunking. By

checking the length of the chunk modulo 8, it is possible to deter-

mine which GearHash instance triggered the chunking condition,

and thus the sequence of bytes that caused the chunking condi-

tion to be fulfilled. Henceforth, we disregard this interleaving and

consider only the 32 bytes that contributed to a positive chunking

decision, which we still call the “sliding window”.

Let 𝐵 = (𝑏0, . . . , 𝑏31) be a sliding window that caused chunking.

Then, over Z/232Z, it holds that∑31

𝑖=0 𝜙 (𝑏𝑖 ) ·231−𝑖 = 2
10+𝑒 with |𝑒 | ≤

2
10
, since the result must be smaller than 2

11
over Z. The left-hand

side of the equation can be rewritten by grouping the terms which

correspond to the same byte value: let 𝑐𝑖 =
∑
𝑗∈{0,...,31} |𝑏 𝑗=𝑖 2

31− 𝑗
.

Then the equation becomes

∑
255

𝑖=0 𝑐𝑖 · 𝜙 (𝑖) = 2
10 + 𝑒 . By observing

𝑚 sliding windows, we can collect𝑚 equations of this form, which

can be interpreted as an instance of the LearningWith Errors (LWE)

problem overZ/232Z, with error terms 𝑒1, . . . , 𝑒𝑚 sampled uniformly

from [0, 210) and secrets 𝜙 (0), . . . , 𝜙 (255) sampled uniformly from

Z/232Z.
We solved a reduced instance of this LWE problem by assuming a

file with a reduced character set, containing only 180 distinct bytes.

This assumption is reasonable as, for example, the ASCII character

set only uses 128 different byte values. We implemented the attack

for𝑚 = 500 (equivalent to approximately 1 GiB of data) using the

uSVP method, with a combination of flatter [31] and G6K [1] for

lattice basis reduction. Our implementation has a one-time cost

of approximately 8 hours runtime on an AMD EPYC 7742 64-core

CPU to recover the key of a user.



Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

3.3 Duplicacy

Similarly to Borg, Duplicacy’s content-defined chunking algorithm

is also based on Buzhash. However, it operates over the larger

quotient ring 𝑅 ≔ F2 [𝑥]/(𝑥64 + 1) and Duplicacy creates the map-

ping 𝜙 : {0, . . . , 255} → 𝑅 from bytes to the ring by using SHA-

256. More specifically, a random 32-byte key 𝐾 is generated. Then,

SHA-256(𝐾) is evaluated and split into four 64-bit integers, cor-

responding to 𝜙 (0), . . . , 𝜙 (3). The resulting hash is then hashed

again to obtain the next four values for 𝜙 , and so on. Concretely,

let 𝑖 ∈ {0, . . . , 255} then 𝜙 (𝑖) = SHA-256
⌊𝑖/4⌋ (𝐾) [(𝑖 mod 4) · 64 :

(𝑖 mod 4 + 1) · 64]. This means that knowing the mapping for

𝑖 = 0, . . . , 3 allows to compute the mapping for all other bytes.

The chunking algorithm otherwise follows the same principle

as the one of Borg. The internal state 𝑠 is set to 0; then, for each

ingested byte 𝑏, 𝑠 is rotated by one bit to the left and 𝜙 (𝑏) is added
the state. A bitmask is applied to the state in order to decide whether

to chunk. The main difference to Borg is that the state is 64 bits

long and that the chunking decision requires that the internal state

has 𝑛 = 22 trailing zeros, inducing an average chunk size of 4 MiB.

Our key recovery attack only relies on a known plaintext assump-

tion and requires approximately 3 GiB of known data. The main

observation is that each value of the internal state 𝑠 is an F2-linear
combination of the bits in each 𝜙 (𝑏). Let 𝐵 = (𝑏0, . . . , 𝑏𝑤−1) be the
𝑤 bytes that have been involved in the chunking decision. Each

zero bit in the internal state when the chunking occurs corresponds

to an equation in (a subset of) the bits of 𝜙 (𝑏𝑖 ) for 𝑖 ∈ {0, . . . ,𝑤 −1}.
Since each𝜙 (𝑏𝑖 ) is 64 bits long, it suffices to observe 256 ·64 = 16384

linearly independent equations to recover all 256 values of 𝜙 . Since

each chunk gives information about 22 trailing zeros, this is equiv-

alent to about 745 chunks or 3 GiB of known data. After collecting

sufficient data, it is trivial to recover the entire description of 𝜙

using linear algebra techniques. We implemented and verified this

attack in practice.

The attack can be made more efficient in a chosen plaintext

setting. Since all values of𝜙 (𝑖) for 𝑖 > 3 are related to𝜙 (0), . . . , 𝜙 (3)
via a public hash function, it suffices to recover only those first four

values. By chunking approximately 46 MiB of data containing only

the bytes 0, 1, 2, 3, the attacker can efficiently recover the entire

mapping using the techniques delineated above.

3.4 Restic

Restic’s content-defined chunking algorithm is based on evaluating

a fixed-size sliding window by mapping it to a polynomial in a

finite field F ≔ F2 [𝑥]/(𝑃) and checking whether its 𝑛 = 20 least

significant coefficients are all equal to 0. Here, key generation sam-

ples the polynomial 𝑃 randomly from the irreducible polynomials

of degree 𝛿 = 53 in F2 [𝑥], 𝑃 ←$ Restic.KGen().
Restic uses minL = 512 kiB − 𝑤 B and maxL = 8 MiB., where

𝑤 = 64 B is the window length, and sets the initial state as 𝜎 = 1 ∈
F𝑝 [𝑥] ← Restic.Init(𝑃). For a byte 𝑏, let poly(𝑏) ∈ F2 [𝑥] be the
polynomial of degree at most 7where coefficients correspond to the

bits of 𝑏. Ingesting one byte of data at a time and Restic computes

𝜎 ′ = (𝜎 · 𝑥8 mod 𝑥512) + poly(𝑏) ← Restic.Update(𝑃, 𝜎, 𝑏). The
chunking decision Restic.Eval(𝑃, 𝜎) is 1 whenever (𝜎 mod 𝑃) mod

𝑥𝑛 = 0 with 𝑛 = 20 and 0 otherwise.

Let 𝑉 be the 512-dimensional F2-vector space of polynomials

of degree at most 511 and let F𝑃 : 𝑉 → 𝑉 denote the linear map

which reduces F2 [𝑥] polynomials modulo 𝑃 and then modulo 𝑥𝑛 .

Every chunk of length less than 8 MiB defines a polynomial equal

to 0 after reducing modulo 𝑃 and subsequently modulo 𝑥𝑛 , i.e., it

defines an element in the kernel of F𝑃 . Clearly, ker(F𝑃 ) is a 512−𝑛
dimensional F2-vector subspace of 𝑉 .

Observing 512 − 𝑛 linearly independent windows that trigger

chunking provides us with an F2-basis of the kernel subspace. We

consider the coefficient matrix where each row corresponds to

an element of the basis of ker(F𝑃 ). The row echelon form of this

matrix corresponds to another basis of ker(F𝑃 ) containing one

polynomial of each degree from 20 to 511 once. Thus, we may

assume without loss of generality that after observing 512 − 𝑛
distinct sliding windows that trigger chunking, we know at least

one polynomial in the kernel subspace of degree 𝑖 for 𝑖 = 20, . . . , 511.

Next, we will see how such a basis can be used to iteratively re-

cover coefficients of the secret irreducible polynomial 𝑃 =
∑𝛿
𝑖=0 𝑝𝑖𝑥

𝑖 ∈
F2 [𝑥]. As 𝑃 is irreducible and of degree 𝛿 , we know that 𝑝𝛿 = 𝑝0 = 1.

Assume now that the 𝑘 > 0 most significant coefficients of 𝑃 are

known and that a polynomial 𝛾 =
∑𝛿+𝑘
𝑖=0 𝛾𝑖𝑥

𝑖
with 𝛾𝑖 ∈ F2 of degree

𝛿 + 𝑘 in the kernel subspace is known. We will show that this can

be used to compute the 𝑘 + 1 most significant coefficients of 𝑃 .

Any polynomial 𝛾 in the kernel subspace is of the form

𝛾 = 𝛼 · 𝑥𝑛 + 𝛽 · 𝑃, (1)

with 𝛼, 𝛽 ∈ F2 [𝑥], and degrees deg(𝛽) = deg(𝛾) − 𝛿 and deg(𝛼) ≤
𝛿 − 𝑛 − 1.

Thus, for 𝛾 of degree 𝛿 + 𝑘 , we know that 𝛽 is of degree exactly

𝑘 , say 𝛽 =
∑𝑘
𝑖=0 𝛽𝑖𝑥

𝑖
with 𝛽𝑘 = 1 and 𝛽𝑖 ∈ F2 for 𝑖 = 0, . . . , 𝑘 − 1.

Consider the product of polynomials

𝛽 · 𝑃 =

𝛿+𝑘∑︁
𝑖=0

(
min(𝑖,𝑘 )∑︁
𝑗=0

𝛽 𝑗 · 𝑝𝑖− 𝑗

)
· 𝑥𝑖 . (2)

As deg(𝛼 · 𝑥𝑛) < 𝛿 , the 𝑘 + 1most significant coefficients of 𝛽 · 𝑃
are the 𝑘 + 1 most significant coefficients of 𝛾 known to us.

Using this equality and 𝑝𝛿 = 1, we can compute the coefficients

𝛽𝑘 , . . . , 𝛽1 with Eq. (2) iteratively from the 𝑘 most significant bits

of 𝛾 and the 𝑘 known bits of 𝑃 . Namely, we have 𝛽𝑘− 𝑗 = 𝛾𝛿+𝑘− 𝑗 +∑𝑗−1
ℓ=0

𝛽𝑘−ℓ𝑝𝛿− 𝑗+ℓ . Finally, we can read off 𝛽0 = 𝛾0. This equality

follows from Eq. (1), 𝑝0 = 1 and the observation that 𝛼𝑥𝑛 has no

constant term.

Having recovered the coefficients of 𝛽 corresponding to the given

polynomial 𝛾 , we can compute one more coefficient of 𝑃 with the

identity 𝑝𝛿−𝑘−1 = 𝛾𝛿−1 +
∑𝑘−1
ℓ=0 𝛽ℓ𝑝𝛿−ℓ−1. Here, we used again the

formula of Eq. (2), that the (𝑘 + 1)th most significant coefficient of

𝛽 · 𝑃 is equal to 𝛾𝛿−1 and that 𝛽𝑘 = 1.

In summary, observing 512 − 𝑛 distinct sliding windows that

trigger chunking allows us to compute a basis of ker(F𝑃 ) with one

polynomial of degree 𝑖 each for 𝑖 = 20, . . . , 511. In particular, we

may assume that we know polynomials of degrees 𝛿 + 1, . . . , 2𝛿 − 1
in ker(F𝑃 ).

Given a polynomial in ker(F𝑃 ) of degree 𝛿 + 𝑘 as well as the 𝑘

most significant coefficients of 𝑃 , we have seen how to recover the

𝑘 + 1 most significant coefficients of 𝑃 . Since the most significant

coefficient 𝑝𝛿 of 𝑃 equals 1, we can use the polynomials from our



Breaking and Fixing Content-Defined Chunking

basis to iteratively apply the procedure and recover the whole

polynomial 𝑃 which is the chunking key.

We implemented and verified the attack outlined above. With an

expected chunk size of 1.5 MiB, we expect a known-data complexity

of (512 − 20) · 1.5 < 750 MiB random data for the attack to work.

3.5 Tarsnap

Contrary to the previously seen content-defined chunking algo-

rithms, Tarsnap uses variable-sized windows to break files into

smaller pieces.

Let 𝜇 = 2
16
. The chunking key 𝐾 = (𝑝, 𝛼, 𝜙) ←$ Tarsnap.KGen()

consists of a prime 𝑝 ≈ 2
24 = 𝜇3/2, 𝛼 ∈ F𝑝 of order greater than 𝜇

and a map 𝜙 : {0, . . . , 255} → F𝑝 which maps bytes to randomly

chosen elements in F𝑝 .
In Tarsnap we have minL = 2

14 = 𝜇/4 B and maxL = 2
10 ·3 ·5 ·17.

Let 𝑆0,𝑘 ≔ (𝑏0, . . . , 𝑏𝑘 ) be a slice of data, where each 𝑏𝑖 denotes a
byte and consider the polynomials

𝑃𝑆 𝑗,𝑘 (𝑥) ≔
𝑘∑︁
𝑖=𝑗

𝜙 (𝑏𝑖 )𝑥𝑖 .

The initialization algorithm 𝜎 = (𝑞,𝑇 , 0) ← Tarsnap.Init(𝐾)
outputs an empty queue 𝑞 with 32 positions, an empty hash ta-

ble 𝑇 , and a counter initialized to 0. Afterwards, the chunking

algorithm starts ingesting 𝑏0, 𝑏1, . . . one byte at a time. The update

algorithm, Tarsnap.Update(𝐾, 𝜎, 𝑏𝑘 ), computes the updated state

𝜎 ′ = (𝑞′,𝑇 ′, 𝑘), where 𝑞′ is obtained by enqueueing 𝑃𝑆
0,𝑘
(𝛼) in 𝑞

and dequeueing the first element of 𝑞 if the queue has reached its

maximum length. If an element is dequeued, then it is added to the

hash table𝑇 , along with the current position 𝑘 (which is the position

at which the element was enqueued, plus 32), yielding 𝑇 ′. Other-
wise,𝑇 ′ =𝑇 . Every time a byte is ingested, the counter is increased

by one. Then, Tarsnap.Eval(𝐾, (𝑞,𝑇 , 𝑘)) outputs 1 if 𝑃𝑆
0,𝑘
(𝛼) ∈ 𝑇 ,

i.e., if there was an entry in 𝑇 of the form (𝑃𝑆0,𝑖 , 𝑖 + 32) with 𝑖 < 𝑘
such that 𝑃𝑆0,𝑖 (𝛼) = 𝑃𝑆0,𝑘 (𝛼), and 𝑘 − (𝑖 + 32) − 1 <

√
4𝑘 − 3. We

call the required inequality on 𝑘 and 𝑖 the recency condition.

Note that when 𝑃𝑆0,𝑖 (𝛼) = 𝑃𝑆0,𝑘 (𝛼) for some 𝑖 < 𝑘 , then 𝑃𝑆
0,𝑘
(𝛼)−

𝑃𝑆0,𝑖 (𝛼) = 𝛼𝑘−𝑖𝑃𝑆𝑖,𝑘 (𝛼) = 0 which implies 𝑃𝑆𝑖,𝑘 (𝛼) = 0. Whenever

the recency condition is satisfied, i.e., 𝑘 − (𝑖 + 32) − 1 <
√
4𝑘 − 3,

the data is chunked and we call (𝑏𝑖 , . . . , 𝑏𝑘 ) the chunking relation.
Due to the queue used, we always have 𝑘 − 𝑖 ≥ 33 and thus

chunking relations are always of length at least 33. From maxL

and the recency condition, we also get an upper bound of 1014 for

the length of a chunking relation. While we cannot in general tell

the length of a chunking relation from a given chunk, we know

the relation has to be one of the at most 1014 − 33 = 981 possible

options (for shorter chunks we get a lower upper bound).

The average chunk size produced by the algorithm in Tarsnap is

𝜇 = 2
16

B for all the keys.

In the following, we describe how to recover Tarsnap’s chunk-

ing key by observing the chunking algorithm’s behaviour on a

chosen plaintext. We start with two observations: the way the se-

cret prime 𝑝 is chosen in Tarsnap’s key generation leaves little

entropy and there are only 17 possible values for 𝑝 . Further, note

that 𝑃𝑆 𝑗,𝑘 (𝛼) = 0 if and only if 𝑐𝑃𝑆 𝑗,𝑘 (𝛼) = 0 for any nonzero 𝑐 ∈ F𝑝 .
Thus, as long as 𝜙 (𝑏𝑖 ) ≠ 0 for some byte 𝑏𝑖 , we can rescale all

images of 𝜙 by 𝜙 (𝑏𝑖 )−1. Therefore, it is sufficient to recover 𝜙 up

to a scalar 𝑐 ∈ F𝑝 .
Our key recovery attack proceeds in two steps. First, we use the

chunking behaviour of the algorithm on a sequence only containing

two distinct bytes, say 𝑏0 and 𝑏1, to recover the precise value of

𝑝 , 𝛼 and the values of 𝑐𝜙 (𝑏0), 𝑐𝜙 (𝑏1) up to an unknown 𝑐 ∈ F𝑝 .
Second, we retrieve the remaining images of 𝜙 up to a scalar by

observing the chunking behaviour on byte sequences where we

expect a sufficient number of resulting chunking relations to contain

a mixture of bytes for which we know the image under 𝜙 (up to

scalar) already and one new byte.

For the first step, we provide two variants both relying on a

chosen plaintext. Variant 1 describes a solution which partially

brute-forces the chunking key, and thus has larger complexity, but

requiring relatively little chosen plaintext. Variant 2 provides a

more efficient key recovery attack but requires an attacker to be

able to choose a larger plaintext to be chunked.

Variant 1 (Bruteforcing relation lengths). Assume we are

given the chunks of a file consisting of a random sequence of 𝑏0
and 𝑏1 bytes. As mentioned before, we may assume that 𝜙 (𝑏0) = 1.

Given any two chunks, we can guess their corresponding relation

lengths 33 ≤ 𝑖, 𝑗 ≤ 1014 out of the 981 possible values. Note that

shorter chunking relations are more likely to appear giving us a

natural order for guessing the relation lengths.

For each 𝑖, 𝑗 , we compute the polynomials 𝑝
(𝑖 )
0
, 𝑝
(𝑖 )
1
, 𝑝
( 𝑗 )
0
, 𝑝
( 𝑗 )
1
∈

F𝑝 [𝑥] of degree at most 𝑖 and 𝑗 , respectively. If our guess is correct,

then it holds that(
𝑝
(𝑖 )
0
(𝑥) 𝑝

(𝑖 )
1
(𝑥)

𝑝
( 𝑗 )
0
(𝑥) 𝑝

( 𝑗 )
1
(𝑥)

)
·
(
𝜙 (𝑏0)
𝜙 (𝑏1)

)
=

(
0

0

)
. (3)

As long as 𝜙 (𝑏0) and 𝜙 (𝑏1) are not both zero, we know that 𝛼 has

to be a root of the determinant of the (2 × 2)-matrix. For all (17)

choices of the prime 𝑝 and a guess for the pair (𝑖, 𝑗), we compute

all roots of the determinant, a polynomial of degree at most 𝑖 + 𝑗 to
retrieve candidate values for 𝛼 . For each candidate tuple (𝑝, 𝑖, 𝑗, 𝛼),
computing the right kernel of the matrix provides us with the value

for 𝜙 (𝑏0) and 𝜙 (𝑏1) up to a constant.

We then check on additional chunks whether the chunking be-

haviour for a candidate solution (𝑝, 𝛼, 𝜙 (𝑏0), 𝜙 (𝑏1)) is consistent,
i.e. there exists a suffix for which the chunking condition is satis-

fied. Otherwise, we discard the candidate. Under the heuristic that

the evaluation of a spurious solutions over all possible chunking

relations behaves uniformly at random in F𝑝 and given that the

number of possible lengths of chunking relations is bounded by

981, checking spurious solutions against even a single other chunk

will allow us to dismiss a spurious solution for (𝑝, 𝛼, 𝜙 (𝑏0), 𝜙 (𝑏1))
with probability at least 1 − 981

2
24
.

For each possible (17) value of 𝑝 and guess for (𝑖, 𝑗), we obtain
at most 17 · (𝑖 + 𝑗) < 17 · 211 candidates for 𝛼 , i.e. with three chunks

not used to construct the matrix we can expect to filter through all

the spurious solutions.

With as little as 0.33 MiB of random data consisting of 𝑏0 and

𝑏1 bytes, we expect to get 5 chunks needed to mount the attack.

The time complexity of this variant is then dominated by the com-

putation and filtering of the at most (𝑖 + 𝑗) < 2
11

roots of the



Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

determinant for each of the 17 · 220 possible guesses for 𝑝 and (𝑖, 𝑗),
i.e. at worst ≈ 2

35
solutions to check.

Note that this is a worst-case complexity and it is likely that

this computation is much faster in the average case. For example,

it could be that not all roots of the determinant polynomial lie

in F𝑝 , leading to fewer candidates to check. This computation is

also embarassingly parallelizable as the resultants can be computed

independently for each guess.

Variant 2 (De Bruijn-like sequences). In this variant we con-

struct a file consisting of 0 and 1 bytes such that we can guess the

relation lengths more easily at the cost of more chosen plaintext

data. We construct the file to have a large number of distinct con-

secutive subsequences of length 33 preceded by both a 0 and 1 byte

in different places of the file. We call such subsequences conjugate

pairs. Note that there are a total of 2
33
polynomials of degree 32 with

coefficients𝜙 (0) or𝜙 (1) as long as𝜙 (0) ≠ 𝜙 (1). Under the heuristic
assumption that these polynomials behave randomly in F𝑝 when

evaluated at 𝛼 , we expect roughly 2
33

2
24

= 2
9
of them to evaluate to 0

and thus trigger chunking with a short chunking relation of length

33. Unfortunately, given the chunks of a file we cannot tell which

of them correspond to such short chunking relations. However, if

we observe that in two places a chunk ends in the same 33-byte

suffix preceded by distinct bytes, then the probability is large that

the chunking relation is the 33-byte suffix. Indeed, the probability

is low that two fixed byte sequences with a shared 33-byte suffix

both satisfy the chunking condition under the condition that the

evaluation of the polynomial corresponding to the shared suffix

is non-zero. Assuming independence between the entries of both

sequences of bytes and a uniform distribution of the evaluation of

polynomials corresponding to all the suffixes at 𝛼 , we can upper

bound the conditional probability by the product of a byte sequence

having a valid chunking relation as suffix divided by the probabil-

ity that the shared suffix of length 33-bytes is non-zero. Thus, the

sought after probability is bounded by

(
981

2
24

)
2

·
(
1 − 2

33

2
24

)−1
≈ 2
−28

.

By modifying techniques originally used to construct de Bruijn

sequences [17], we can build a sequence of length 9 · 226 bytes (or
576 MiB) containing only 0 and 1 byte entries such that there are

𝑡 = 2
26
distinct conjugate pairs of length 𝑢 = 34 appearing in the

file. We refer to Appendix A for the details of how to construct

such an (𝑛,𝑢, 𝑡) sequence, for relatively small 𝑛. Given 2
26
distinct

conjugate pairs of length 34 in the file, we expect roughly
2
26

2
24

=

2
2
of these subsequences to trigger chunking in both locations

because of the common 33-byte suffix. Note that this estimate is a

little optimistic as some (parts of) subsequences might fall into the

minimum chunk length not considered by the chunking algorithm.

Experimentally, we observe that 12% of the conjugate pairs in our

house 576 MiB sequence are at a distance smaller than theminimum

chunk length, rendering them ineffective. Still, the expected number

of subsequences that trigger chunking remains at about (1− 0.12) ·
2
2 ≈ 3.5 which is large enough for an acceptable success rate.

After observing the chunking behaviour on our file, we assume

that if chunking happened after both sequences of a conjugate pair,

then their common suffix is the chunking relation of length 33. Ob-

serving two such pairs provides us with two chunking relations, i.e.,

we can compute the polynomials 𝑝
(33)
0

, 𝑝
(33)
1

, 𝑝
(33)
0

, 𝑝
(33)
1
∈ F𝑝 [𝑥] of

degree at most 32 as in Eq. 3.

As in Variant 1, as long as 𝜙 (0) and 𝜙 (1) are not both zero, we

know that 𝛼 has to be a root of the determinant of the first matrix.

For all (17) choices of the prime 𝑝 we compute the roots of the

determinant, a polynomial of degree at most 64, and compute the

corresponding right kernel of the matrix to retrieve a value for 𝜙 (0)
and 𝜙 (1) up to a constant. Using the remaining chunks given, we

can sieve through the at most 17 · 64 potential solutions for 𝑝 , 𝛼 ,
𝜙 (0) and 𝜙 (1) and dismiss potential solutions for which no valid

suffix that can act as a chunking relation can be found for some

chunk. Under the same heuristic as in Variant 1, we can dismiss

any spurious solution with probability at least 1 − 981

2
24

even when

checking just against a single additional chunk.

Recovering the remaining chunking key. Having recovered

𝑝, 𝛼 as well as 𝜙 (0) and 𝜙 (1) up to a scalar, we are left to recover the
remaining images of 𝜙 up to the same scalar to obtain an equivalent

chunking key. We craft our chosen plaintext such that for each

𝑖 = 2, . . . , 255 we expect 3-4 chunks containing bytes 𝑖 and bytes

for which we know the image, e.g. 0 and 1. For each chunk and all

possible lengths of chunking relations, we compute the potential

image of 𝜙 (𝑖) by solving the corresponding linear system. This way

we obtain one possible image for each guess of the length and chunk.

Under the assumption that spurious candidate solutions for 𝜙 (𝑖) are
randomly distributed in F𝑝 and because chunking relations can be

at most of length 990 (albeit the median is 216 and average 240), we

expect a three-way collision of spurious solutions to happen in the

worst possible setting only with a probability less than
990

3

6·248 ≈ 2
−20

.

Thus, in the intersection of all the candidates for the 3-4 chunks, we

expect only one possible image 𝜙 (𝑖) to be left. The time complexity

of this second step of the attack is negligible and given the average

chunk size of 2
16

B, we need to choose a plaintext roughly of size

254 · 4 · 216 B ≈ 63 MiB.

Using Variant 1, we thus require as little as 64 MiB of chosen-data

for the whole attack to work, and approximately 639 MiB of chosen-

data using Variant 2 with a 576 MiB payload constructed using

techniques of Appendix A. Note that the data requirements could

be lowered further if one was willing to accept a non-negligible

failure probability.

4 Secure Chunking

All the attacks we have discussed so far are based on the fact that

the attacker can predict the chunking behaviour of a file. This is

because an adversary can run the chunking algorithm themselves

after executing a key-recovery attack.

In this section, we turn to a formal treatment of chunking al-

gorithms, specifically for the class of fixed-size window chunking

(FSWC) schemes, that is KCDC schemes which make their chunk-

ing decision depending only on the last 𝑤 bytes seen, for some

fixed𝑤 . We focus on FSWC schemes as they are the most common

in practice and the most amenable to formal analysis.

We first define the syntax for a FSWC scheme and introduce

our security notion for such schemes. We then provide a provably

secure construction based on polynomial hashing and a block cipher.

Finally, we provide benchmarks for our implementation.



Breaking and Fixing Content-Defined Chunking

4.1 FSW Chunking and its Security

Fixed-size window chunking schemes are a special class of KCDC

schemes which are characterized by 𝑤-locality: the decision of

whether to cut a chunk of data only depends on the last𝑤 bytes.

Definition 4.1 (𝑤-locality). Let𝑤 be a positive integer. A chunk-

ing scheme Chk is said to have𝑤-locality if:

∀K←$ Chk.KGen(), 𝜎 ← Chk.Init(K),
∀ 𝑠1, 𝑠2 ∈ {0, . . . , 255}∗, 𝑠1 [−𝑤 :] = 𝑠2 [−𝑤 :] :

Chk.Eval(K,Chk.Update∗ (𝐾, 𝜎, 𝑠1)) =
Chk.Eval(K,Chk.Update∗ (𝐾, 𝜎, 𝑠2)).

Definition 4.2 (Fixed-size window chunking scheme). Let𝑤 be a

positive integer. A𝑤-FSWC scheme Chk is a KCDC scheme which

additionally fulfills𝑤-locality.

In this setting, we can define a “stateless” version of the chunking

decision algorithm, which takes a data window of 𝑤 bytes and

returns the chunking decision for that window. This algorithm,

denoted Chk.WindowEval(𝐾,𝑊 ), with |𝑊 | = 𝑤 , is equivalent to
an initialization with key 𝐾 , a call to Update∗ with the window𝑊 ,

and a final chunking decision evaluation.

Security notions. We provide two notions for the security of

a chunking algorithm. The first notion, FSWC-FtG (“Find-then-

Guess”, following notation from [3]) intuitively captures security

against fingerprinting. Informally, an attacker that sees the chunk-

ing behaviour of known data should not be able to predict the

chunking behaviour on unseen data.

The FSWC-FtG game, formalized in Fig. 2, proceeds in two

phases: in the Find phase, the adversary gets access to an oracle

that provides the chunking decision for arbitrary windows. In the

Guess phase, the adversary provides a window (different from any

window queried in the Find phase) and gets a chunking decision

made by either the chunking algorithm or by sampling a random

coin. The random coin is sampled following the Bernoulli distribu-

tion Ber(𝜆−1), i.e., taking value 1 with probabiltiy
1

𝜆
, where 𝜆 is a

parameter of the game. This parameter corresponds to the expected

chunk length of the scheme: for arbitrary data input and randomly-

chosen key, Chk.Update is expected to output 1 after processing

on average 𝜆 many bytes. Since the random coin is independent

of the underlying data, this intuitively means that the chunking

pattern does not reveal more information to the adversary than

what it already knows.

We define the advantage of an adversary A in the FSWC-FtG

game against Chk as

Adv
FSWC-FtG

Chk,𝜆
(A) =

����Pr[FSWC-FtG(A,Chk, 𝜆)] − 1

2

���� .
The second notion we define, FSWC-RoR (“Real-or-Random”,

in Fig. 3), is a more standard, “indistinguishability-type” notion of

security. Informally, an adversary should not be able to distinguish

between chunking decisions made by Chk or made by sampling a

random coin. We model this as a game in which the adversary can

ask a chunking oracle for the chunking decision associated to an

arbitrary window of bytes. This decision is computed according to

the value of a secret bit 𝑏: if 𝑏 = 0, the oracle replies by using the

Game FSWC-FtG(A,Chk, 𝜆):
1 𝑏 ←$ {0, 1}
2 𝑆 ← ∅
3 𝐾 ←$ Chk.KGen()
4 (𝑊 ∗, st) ←$AOfind (find)
5 If 𝑏 = 0:

6 𝑑 ← Chk.WindowEval(𝐾,𝑊 ∗)
7 Else:

8 𝑑 ←$ Ber(𝜆−1)
9 𝑏′ ←$A(guess, 𝑑, st)

10 Return 𝑏′ = 𝑏 ∧𝑊 ∗ ∉ 𝑆

Oracle Ofind (𝑊 ):
1 𝑆 ← 𝑆 ∪ {𝑊 }
2 𝑑 ← Chk.WindowEval(𝐾,𝑊 )
3 Return 𝑑

Figure 2: The FSWC-FtG security game for a FSW chunking

algorithm Chk. Code in gray prevents trivial wins.

Game FSWC-RoR(A,Chk, 𝜆):
1 𝑏 ←$ {0, 1}
2 𝐾 ←$ Chk.KGen()
3 𝑇 ← ∅
4 𝑏′ ←$AO
5 Return 𝑏′ = 𝑏

Oracle O(𝑊 ):
1 If 𝑇 [𝑊 ] ≠ ⊥:
2 Return 𝑇 [𝑊 ]
3 If 𝑏 = 0:

4 𝑑 ← Chk.WindowEval(𝐾,𝑊 )
5 Else:

6 𝑑 ←$ Ber(𝜆−1)
7 𝑇 [𝑊 ] ← 𝑑

8 Return 𝑑

Figure 3: The FSWC-RoR security game for a FSW chunking

algorithm Chk. Code in gray prevents trivial wins.

chunking algorithm, otherwise by tossing an accordingly biased

random coin, again following Ber(𝜆−1) for parameter 𝜆.

We define the advantage of an adversary A in the FSWC-RoR

game against Chk as

Adv
FSWC-RoR

Chk,𝜆
(A) =

����Pr[FSWC-RoR(A,Chk, 𝜆)] − 1

2

���� .
While these two notions seem different, we prove that they

are asymptotically equivalent in Appendix B: FSWC-RoR tightly

implies FSWC-FtG, vice versa losing a factor of number of Ofind
queries. From here one, we thus only use the FSWC-RoR notion,

which is simpler to work with.

It is also easy to see that the FSWC-RoR notion induces a simulation-

based notion, where the leakage given to the simulator is equivalent

to the table 𝑇 in the game.

From chunking decisions to chunks. To conclude our analysis,

we prove that the FSWC-RoR security of a chunking scheme implies

that the lengths of chunks are computationally indistinguishable

from a (shifted) geometric distribution when using the canonical

chunking implementation of Fig. 1.

Theorem 4.3 (FSWC-RoR Implies Geometric Distribution of

Chunk Lengths). Let Chk be a FSWC-RoR-secure𝑤-FSWC scheme

for parameter 𝜆. Let minL,maxL be positive integers, with maxL >

minL. Then, ∀K ←$ Chk.KGen() no efficient adversary A choos-

ing data ∈ {0, . . . , 255}∗, can distinguish the sequence of lengths of



Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

the chunks output by 𝑓Chk (data,minL,maxL,K), (except the last one)
from a sequence of random variables of the same length (𝐿𝑖 )𝑖 where
𝐿𝑖 =min(minL + 𝑋𝑖 ,maxL) with 𝑋𝑖 ∼ Geom(𝜆−1).

Proof sketch. Let O be an oracle that either implements 𝑓Chk
or simulates it by tossing a random coin sampled from Ber(𝜆−1)
whenever 𝑓Chk calls Chk.Eval. Note that the latter case is equivalent

to having lengths sampled as min(minL + 𝑋𝑖 ,maxL) with 𝑋𝑖 ∼
Geom(𝜆−1). LetA be an adversary distinguishing between the two

cases. We construct an adversary B for the FSWC-RoR security

game by simulating 𝑓Chk: B skips the first minL bytes and then

starts requesting chunking decisions for every window in the data

chosen by A. Whenever B’s oracle returns 1 or no more bytes

are left, B returns all bytes processed up to that point. Finally, B
outputs the same bit as A. The adversary B perfectly simulates

either the real or random world forA, depending on the hidden bit

of its oracle. It can be clearly seen that the advantage of B in the

FSWC-RoR is the same as the advantage ofA in its own game. □

On folklore mitigations. All our attacks from Section 3 achieve

key recovery and most of them rely only on a known-plaintext

assumption. This shows that the folklore mitigations fail to pro-

vide security according to a much weaker security notion than the

one we propose here. Indeed, our notions are in a chosen-plaintext

model and set a much weaker winning condition for the adversary:

it needs only to distinguish between real chunking behaviour and

plaintext-independent decisions, rather than having to recover the

key. A successful key recovery attack immediately allows an adver-

sary to win in our security games with overwhelming probability.

Scope of security guarantees. Our security notions captures

that the leakage from individual chunks should be minimal. Within

the overall system a KCDC scheme is deployed, there might be other

leakage though which needs to be considered by system designers.

For example, our security definition from Theorem 4.3 explicitly

does not capture the leakage given by the length of the last chunk.

We discuss the scope of security guarantees provided by our notions

in Section 5, within the bigger context of attacks and mitigations.

4.2 Poly-hashing-then-Encrypt Construction

We now introduce our FWS chunking construction Chk-PHTE

(“Poly-hashing-then-Encrypt”) which uses a polynomial hash for

the (rolling) processing of data windows and a block cipher for the

chunking decision evaluation.

Let F be a finite field of size 𝑝 . Let 𝜆 = 2
ℓ
be a power of 2

and let 𝑤 ∈ N.1 Let E be a PRF-secure block cipher with block

length 𝑛 (fulfilling 𝑛 > log
2
𝑝 and 𝑛 > log

2
𝜆) and key length 𝑘 .

Let btof : {0, 1}8 → F and ftob : F→ {0, 1}𝑛 be injective encoding
functions mapping bytes to field elements and field elements to

bit-strings of length 𝑛, respectively. Our formal𝑤-FSWC algorithm

Chk-PHTE is depicted in Fig. 4.

Informally, each algorithm does the following:

• KGen(): samples keys for the polynomial hashing and for

the block cipher.

• Init(𝐾): initializes the current polynomial evaluation to

0 ∈ F and the current window to an empty list.

1
Having 𝜆 be power of 2 leads to natural chunk sizes and slightly simplifies the analysis;

other values of 𝜆 are also possible.

• Update(𝐾, 𝐵): updates the current polynomial evaluation

by removing the oldest byte (which is the term of degree

𝑤 − 1), shifting the polynomial by multiplying with 𝐾poly

and adding the new byte, which will be the constant term.

The window is updated accordingly and has the invariant

that it contains the last𝑤 bytes seen, from the oldest to the

newest.

• Eval(𝐾, 𝜎): evaluates the block cipher on the current poly-

nomial evaluation and checks whether the output has more

than ℓ trailing 0s, returning 1 in that case, otherwise 0.

It is immediate to see thatChk-PHTE is of FSW type:WindowEval

is equivalent to the Init algorithm followed by𝑤 Update calls with

the bytes in the window, followed by a call to Eval. Inspection of the

Update algorithm also establishes𝑤-locality: everytime the queue

is updated, the oldest byte is removed and the new byte is added.

Thus, the state does not include any byte that is more than𝑤 bytes

distant from the newest byte and uses only those that are in the

state to make a decision.

Our Chk-PHTE construction permits efficient updating, as it

requires a constant number of field operations to update the state

of the chunker.

Before proving security, we establish the following lemma.

Lemma 4.4 (Polynomial hashing is Universal). Let F be a

finite field. Let𝑤 be a fixed positive integer. Let𝑢𝐾 ((𝛽0, . . . , 𝛽𝑤−1)) =∑𝑤−1
𝑖=0 𝛽𝑖 · 𝐾𝑤−1−𝑖 . Then, 𝑢𝐾 is a

𝑤−1
|F | -universal hash function family

for 𝐾 ∈ F.

Proof. We seek to upper bound the probability that an adver-

sary finds twomessages (𝛽0, . . . , 𝛽𝑤−1) and (𝛽 ′0, . . . , 𝛽 ′𝑤−1) such that
their hashes collide for a randomly chosen 𝐾 . Consider the two

polynomials𝑈 (𝑥) = ∑𝑤−1
𝑖=0 𝛽𝑖 ·𝑥𝑤−1−𝑖 and𝑉 (𝑥) =

∑𝑤−1
𝑖=0 𝛽 ′𝑖 ·𝑥𝑤−1−𝑖 .

They are both of degree at most 𝑤 − 1, and so is their difference

𝑈 (𝑥) − 𝑉 (𝑥). There are at most 𝑤 − 1 values of 𝑥 for which the

difference polynomial evaluates to 0, and so the probability that 𝐾

is a root is
𝑤−1
|F | , by the Schwartz-Zippel lemma. □

We now show that our construction achieves FSWC-RoR secu-

rity for parameter 𝜆, assuming PRF security of the block cipher E.

Theorem 4.5 (Chk-PHTE is FSWC-RoR-secure). Let Chk-PHTE
be the 𝑤-FSWC algorithm in Fig. 4. For every adversary A against

the FSWC-RoR security (with parameter 𝜆) of Chk-PHTE making at

most 𝑞 queries, there exist an adversary B running in approximately

the same time as A such that

Adv
FSWC-RoR

Chk (A) ≤ Adv
PRF

E (B) +
𝑞2 (𝑤 − 1)

2|F| · 1
𝜆
,

where B makes at most 𝑞 queries to its PRF oracle.

Proof. We proceed via the following a sequence of games (see

Fig. 7 in Appendix C for a code-based representation).

Game 0: The original game.

Game 1: We replace the block cipher Ewith a random function 𝑓 .

Game 2: We next replace the outputs of 𝑓 with uniformly ran-

dom ones. This gives us the intermediate game𝐺 ′
2
where the output

is chosen as 𝑐 ←$ {0, 1}ℓ (we do not need to sample 𝑛 bits, since

only the last ℓ bits are considered). Thus, the probability of return-

ing 1 is 2
−ℓ = 𝜆−1. In every other case we return 0. This is exactly



Breaking and Fixing Content-Defined Chunking

KGen():
1 𝐾poly ←$ F
2 𝐾E ←$ {0, 1}𝑘
3 Return (𝐾poly, 𝐾E)

Init(𝐾):
1 𝜎 ← (0 ∈ F, [])
2 Return 𝜎

Update(𝐾, 𝐵):

1 (𝐾poly, ·) ← 𝐾

2 (𝑢,𝑊 ) ← 𝜎

3 If |𝑊 | =𝑤 :

4 𝐵old ←𝑊 [0]
5 𝑊 ←𝑊 [1 :]
6 Else: 𝐵old ← 0

7 𝑢 ← 𝑢 − btof(𝐵old) · 𝐾𝑤−1
poly

8 𝑢 ← 𝑢 · 𝐾poly + btof(𝐵)
9 𝑊 .append (𝐵)

10 Return (𝑢,𝑊 )

Eval(𝐾, 𝜎):
1 (·, 𝐾E) ← 𝐾

2 (𝑢, ·) ← 𝜎

3 𝑐 ← E(𝐾E,ftob(𝑢))
4 If 𝑐 mod 𝜆 = 0:

5 Return 1

6 Else:

7 Return 0

WindowEval(𝐾,𝑊 ):
1 (𝐾poly, 𝐾E) ← 𝐾

2 (𝐵0, . . . , 𝐵𝑤−1) ←𝑊

3 𝑢 ← ∑𝑤−1
𝑖=0 btof(𝐵𝑖 ) · 𝐾𝑤−1−𝑖

poly

4 𝑐 ← E(𝐾E,ftob(𝑢))
5 If 𝑐 mod 𝜆 = 0: Return 1

6 Else: Return 0

Figure 4: Our𝑤-FSW chunking construction Chk-PHTE, based on polynomial hashing over F and a block cipher E.

equivalent to sampling a decision 𝑑 from a Bernoulli distribution

with parameter 𝜆−1. Note that this makes 𝐺 ′
2
equivalent to 𝐺2, so

we consider only the latter.

We now rewrite the advantage of the adversary in the FSWC-RoR

game:

Adv
FSWC-RoR

Chk
(A) =

����Pr[𝐺0] −
1

2

����
≤ | Pr[𝐺0] − Pr[𝐺1] | + | Pr[𝐺1] − Pr[𝐺2] | +

����Pr[𝐺2] −
1

2

����
Clearly, Pr[𝐺2] is 1

2
, since the oracle response𝑑 is sampled from a

Bernoulli distribution, independent of the secret bit𝑏. The transition

from𝐺0 to𝐺1 is standard and the term | Pr[𝐺0]−Pr[𝐺1] | is bounded
by the advantage of an adversary B against the PRF security of E.

It remains to bound the term | Pr[𝐺1] − Pr[𝐺2] |.
Note that 𝐺1 and 𝐺2 are identical to the adversary until the fol-

lowing “bad event” in 𝐺2: the adversary queries windows𝑊0, . . . ,

𝑊𝑞−1, (1) there exist two windows𝑊𝑖 ,𝑊𝑗 such that the correspond-

ing values of 𝑢 (𝑢𝑖 and 𝑢 𝑗 ) are equal, but (2) the decision bits 𝑑𝑖 and

𝑑 𝑗 are different. Since in 𝐺2 the value of 𝑑 is independent of the

value of 𝑢, we can compute the probability of the bad event as the

product of the probability of (1) and (2) separately.

For (1), the probability that𝑢𝑖 = 𝑢 𝑗 is at most
𝑤−1
|F | , by Lemma 4.4.

Over all 𝑞 queries, the probability that there exist two queries𝑊𝑖

and𝑊𝑗 such that 𝑢𝑖 = 𝑢 𝑗 is then at most
𝑞2 (𝑤−1)

2 |F | , by union bound.

For (2), the probability that two bits 𝑑𝑖 and 𝑑 𝑗 , both sampled from

Ber(𝜆−1), are different is 𝜆−1 (1 − 𝜆−1) ≤ 𝜆−1.
By Lemma 2.1, with 𝑍 being the bad event, we have that:

| Pr[𝐺1] − Pr[𝐺2] | ≤
𝑞2 (𝑤 − 1)

2|F| · 𝜆−1

Plugging in the above bounds in the rewritten advantage term

yields the claim. □

4.3 Patching Restic and Benchmarking

In the proof, the only requirement we need from the polynomial

hashing is that it is universal. As a consequence, we can plug any

UHF with with a rolling property in place of the polynomial hash-

ing and obtain another FSWC-RoR-secure chunking scheme. In

Appendix D, we show that Restic’s chunking scheme is also a UHF,

2
6

2
8

2
10

2
12

2
14

2
−1

2
4

2
9

file size (MiB)

r
u
n
t
i
m
e
(
s
e
c
)

Chk-PHTE

2
6

2
8

2
10

2
12

2
14

2
−4

2
2

2
8

file size (MiB)

r
u
n
t
i
m
e
(
s
e
c
)

Restic

Figure 5: Runtime of our Chk-PHTE implementation and of

Restic. Solid lines represent the runtime of the respective

chunking algorithm without applying a block cipher, while

dotted lines are with AES. Slowdown for Chk-PHTE is be-

tween 57% and 104%. For Restic it is between 53% and 165%.

making it a suitable candidate. In fact, we have implemented a

patch for Restic that adds a block cipher evaluation to the state and

checks the chunking condition on the block cipher output.
2

In Fig. 5, we present benchmarks for both our implementation

of Chk-PHTE and of Restic. The benchmarks were run on a single

thread on a commodity laptop with an Intel Core i7-1260P, running

at 3GHz. All benchmarks exclusively target the performance of the

chunking scheme, rather than the entire backup process.

Our fairly unoptimized implementation of Chk-PHTE incurs

a slowdown between 57% and 104% in our measurements when

applying the block cipher as opposed to checking the chunking

condition on the result of ftob directly. The runtime of Restic with

our patches similarly is 53%–165% slower than the original Restic.

5 Discussion

Real-world applicability of our attacks on backup systems.

In Section 3, we have presented efficient key recovery attacks

against KCDC schemes as deployed in the wild. However, (K)CDC

schemes are typically part of larger systems and the information

2
Both our implementation and the Restic patch are anonymously available at https:

//figshare.com/s/6afabccf228ccf79cb5f.

https://figshare.com/s/6afabccf228ccf79cb5f
https://figshare.com/s/6afabccf228ccf79cb5f


Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

required to accomplish our key-recovery attacks – specifically, the

length of chunks of a known or chosen file – may not be available to

an attacker. Our attacks in particular rely on noiseless information

about the length of chunks; uncertainty (e.g., due to padding) makes

exploitation more challenging. As a main obstacle, compression,

which is common in backup systems, introduces uncertainty in the

length of chunks. Still in the context of backup systems, clients

may upload multiple encrypted chunks together, which makes it

difficult to discern chunk boundaries. Finally, the order of chunks

must be known to the adversary.

Nonetheless, these obstacles do not compensate for a lack of

mitigations. For example, Restic only provides compression from

version 0.14.0 onwards [26] (released in August 2022) but does not

retroactively compress previously uploaded data. Moreover, data

which has already been compressed resists further compression,

rendering the effect of compression on chunk length negligible. We

have created a script that can reliably recover the original chunk

lengths from the length of chunks compressed using zlib (used by

Tarsnap) and zstd (used by Restic), provided that the plaintext has

been compressed prior to processing.

Restic also tries to conceal chunk boundaries by concatenating

multiple chunks together to obtain the so-called pack format [27].

However, the attacker can still infer the number of chunks by ob-

serving the length of the pack header, which is a known constant

plus a fixed number per chunk. Assuming the chunk order in the

pack matches the original file, the attacker can infer the bound-

ary of the last chunk in the pack, reducing our attack’s efficiency

but not its feasibility. While the order of chunks in the pack is

non-deterministic, due to Restic’s usage of multithreading when

creating pack files, in single-core systems or systems where Restic

is configured to use a single thread, the order of chunks in the

pack becomes deterministic, making our attacks applicable. We

have tested our attack against Restic in this configuration (no com-

pression, single-threaded backup) and successfully recovered the

chunking key.

As another example of a system where our attacks are applicable,

Tarsnap sends chunks to the server one at a time and in a determin-

istic order, immediately exposing chunk lengths to the adversary.

One obstacle is that, along with file chunks, Tarsnap also sends

chunks composed of metadata which, from the point of view of the

server, are indistinguishable from file chunks. This can be bypassed

by using smaller payloads that do not incur a metadata chunk until

the last chunk is sent, or by splitting the payload into multiple files,

which have to be uploaded separately (i.e., with individual calls to

the tarsnap command). In particular, the first variant of our attack

against Tarsnap is immediately applicable in this scenario, while

the payload to recover the chunking key 𝜙 requires splitting the

payload into two files.

Another instance where we completed the attack is Borg, which,

in the default configuration, stores chunks in a deterministic order

on the server without additional padding. We have successfully

recovered the chunking key from a Borg repository.

Although the aforementioned obstacles generally frustrate our

attack efforts, note that we target the security of content-defined

chunking as a general primitive, rather than in these specific sys-

tems. Any system that wishes to use KCDC schemes must consider

their leakage. Overall, our results should be compared to the ones

for compression side-channel attacks. Both require some observable

“signal” that is visible to the attacker, such as the length of chunks

or the length of compressed data, respectively. Depending on the

system, this signal may be noisy or not visible to the attacker. Still,

this does not guarantee the absence of leakage from the primitive.

We proceed to put this in more precise terms. Assume a sequence

of chunks (𝐶𝑖 )𝑖=1,2,... is created and post-processed in a way that

leaves ℓ𝑖 possibilities for the length of chunk 𝐶𝑖 . Any attack that

requires 𝑁 chunks to be known exactly will have to bruteforce

through

∏𝑁
𝑖=1 ℓ𝑖 possibilities. Since this grows exponentially with

𝑁 , most attacks become infeasible in the face of even a small un-

certainty. This is the case for Restic, Duplicacy, and Bupstash. For

attacks that, instead, only require few chunks (one in the case of

Borg, two for Tarsnap), the uncertainty might not be enough to

prevent attacks. In fact, even if the uncertainty leaves a relatively

large number of possibilities for the chunking key, running the

attack multiple times allows discarding candidates very quickly.

Note also that all our attacks specifically target key recovery,

leaving open the possibility of more effective attacks that allow

an attacker to fingerprint without recovering the entire key. For

example, in Restic the attacker can recover information about some

chunk boundaries with a basis of only a subspace of the entire

kernel. In fact, the adversary will be able to recover all the chunk

boundaries where the chunking polynomial lies in the recovered

subspace.

Interpreting our security notion. In Section 4, we have pro-

posed a new security notion for CDC schemes. It remains to discuss

the real-world guarantees this notion provides, as well as its inher-

ent limitations.

Our security notion resembles the ones for deterministic encryp-

tion [30] in that both provide “indistinguishable from random” guar-

antees as long as the adversary chooses distinct messages. Much

like deterministic encryption, KCDC schemes will always reveal

patterns for identical chunks. This is inherent to KCDC schemes:

they must be deterministic to allow subsequent deduplication.

In other words, our security notion guarantees the least possible

leakage when looking at individual chunks. Indeed, we have proved

that the chunk lengths created by a FSWC-RoR KCDC scheme are

computationally indistinguishable from lengths sampled from a

geometric distribution independently of the plaintext. However,

our security notion does not prevent an adversary from learning

information about the plaintexts by looking at all the chunks in

a file, for example, because similarity patterns within the file are

revealed by duplicated chunks or because the adversary can infer

the length of the file by looking at the length of the chunks.

In practice, developers and protocol designers should be aware

of the inherent limitations of KCDC schemes, as highlighted above,

and design their systems accordingly. For example, using suitable

padding prior to chunking can hide the total file length, while hid-

ing deduplication patterns within and across files may prevent an

adversary from learning additional information about the plaintext.

We propose formally analyzing the security guarantees of complete

data deduplication systems built from KCDC schemes operating

alongside chunk deduplication and other system-level operations

as a challenging topic for future work. The existing formal work

on file deduplication such as [4, 7] may serve as a good starting



Breaking and Fixing Content-Defined Chunking

point. Such a system-wide analysis should also capture alternative

mitigations such as padding, which we further discuss below.

The cost of mitigations. Mitigating fingerprinting attacks in

a cryptographically principled way does not come for free. While

the polynomial evaluation of our Chk-PHTE construction is cheap,

the evaluation of a block cipher like AES remains expensive in

comparison, even when harnessing AES-NI instructions.

To assess the impact of patching existing systems, we have im-

plemented a patch for Restic that applies a block cipher to the

state polynomial, which we presented in Section 4.3. While the

performance overhead is noticeable, we deem it reasonable for ob-

taining a cryptographically sound KCDC solution, especially for

security-conscious users.

Alternative mitigations. The performance overhead of our con-

struction raises the question of whether there are other mitigations

that can be applied to KCDC schemes. As previously discussed, the

cost of an attack in the presence of uncertainty grows exponen-

tially with the number of chunks 𝑁 required by the attack. Then,

under the assumption that the best attack requires exact knowledge

of the length of at least 𝑁 chunks, obfuscating the length of each

chunk appropriately could be a feasible mitigation. This could be

done, for example, by applying a padding to each chunk. A more

refined approach would be applying length-hiding padding to each

chunk, or encrypting each chunk using a length-hiding encryption

scheme [24].

While such an approach would thwart most of our current at-

tacks, as is the case of Duplicacy, Restic, and Bupstash, it would still

leave the chunker insecure within our formal model. Furthermore,

since we have not proved optimality of our attacks, the possibility

is still open that new attacks with a lower chunk requirement exist.

Indeed, cryptography has a long history that supports the truism

that “attacks only get better”.

Furthermore, these approaches are not a panacea. In the particu-

lar case of random-length padding, if the adversary is given the pos-

sibility of repeatedly observing the same chunk padded randomly

each time, it might be able to cancel the padding statistically. One

example of this approach is the Borg Obfuscate pseudo-compressor

which adds random padding. Even worse, since the attack on Borg

only requires one chunk, most configurations of Borg’s padding

scheme are not aggressive enough to prevent our attacks.

At the same time, these mitigations come at a cost: clearly,

padding to the maximum chunk size provides zero bits of infor-

mation to the attacker, but it also massively increases the storage

size of the backup. For Borg, the storage size can increase mas-

sively depending on the user configuration, with a 100-fold length

increase in some cases. The solution chosen by Duplicity is to pad

to the next multiple of 256 bytes, which incurs an overhead of at

most 255 bytes per chunk. Even optimal length-hiding padding

such as in [22] will incur a storage cost proportional at least to

the logarithm of the maximum size of the chunk, while still leak-

ing some bits of information. Concretely, the scheme of [22] leaks

O(log log𝑀) bits, where𝑀 is the maximum length of a plaintext.

Again, we reiterate that these mitigations only work if there exist

no attacks (significantly) better in terms of the number of chunks

required than the one we present, which is still an open question.

6 Conclusion

Content-defined chunking (CDC) is an approach that is ubiquitous

in applications using deduplication. Fingerprinting attacks against

CDC schemes are a threat that has been recognised by developers,

but the approaches they have taken to defend against such attacks

have not been analysed before.

On the destructive side, we showcased key-recovery attacks

against five distinct keyed CDC (KCDC) schemes as found in the

wild. We also showed that the attacks extend from the isolated

KCDC schemes to the full system for Borg, Restic and Tarsnap.

On the constructive side, we proposed formal syntax and secu-

rity notions for KCDC schemes. We also provided a provably secure

construction, which we implemented and benchmarked. We devel-

oped a provably secure patch for Restic, one of the most popular

backup tools, and benchmarked its performance overhead.

Our work highlights that currently deployed approaches to mak-

ing KCDC resistant to fingerprinting attacks are inadequate. It also

provides a way forward for developers, albeit one with a perfor-

mance penalty. Our work also points to the need for further analysis

of the security guarantees provided by chunk-based deduplication

systems in general, both from an attack perspective as well as from

the viewpoint of formal foundations.



Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

References

[1] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W.

Postlethwaite, and Marc Stevens. 2019. The General Sieve Kernel and New

Records in Lattice Reduction. In EUROCRYPT 2019, Part II (LNCS, Vol. 11477),

Yuval Ishai and Vincent Rijmen (Eds.). Springer, Cham, 717–746. https://doi.org/

10.1007/978-3-030-17656-3_25

[2] Boris Alexeev, Colin Percival, and Yan X Zhang. 2025. Chunking Attacks on File

Backup Services using Content-Defined Chunking. Cryptology ePrint Archive,

Paper 2025/532. https://eprint.iacr.org/2025/532

[3] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. 1997. A Concrete

Security Treatment of Symmetric Encryption. In 38th FOCS. IEEE Computer

Society Press, 394–403. https://doi.org/10.1109/SFCS.1997.646128

[4] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. 2013. Message-Locked

Encryption and Secure Deduplication. In EUROCRYPT 2013 (LNCS, Vol. 7881),

Thomas Johansson and Phong Q. Nguyen (Eds.). Springer, Berlin, Heidelberg,

296–312. https://doi.org/10.1007/978-3-642-38348-9_18

[5] Dan Boneh and Victor Shoup. 2023. A Graduate Course in Applied Cryptography.

https://toc.cryptobook.us/ Version 0.6. Accessed on 7 Jan 2025.

[6] Borg. [n. d.]. Buzhash Chunker. https://borgbackup.readthedocs.io/en/stable/

internals/data-structures.html#buzhash-chunker. Accessed on 18 Jul 2023.

[7] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, Håvard Raddum, and Mohsen

Toorani. 2018. Security Notions for Cloud Storage and Deduplication. In Provable

Security - 12th International Conference, ProvSec 2018, Jeju, South Korea, October

25-28, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11192), Joonsang

Baek, Willy Susilo, and Jongkil Kim (Eds.). Springer, 347–365. https://doi.org/10.

1007/978-3-030-01446-9_20

[8] Bupstash. [n. d.]. Bupstash Github. https://github.com/andrewchambers/

bupstash. Accessed on 16 Nov 2023.

[9] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online Website

Fingerprinting: Evaluating Website Fingerprinting Attacks on Tor in the Real

World. In USENIX Security 2022, Kevin R. B. Butler and Kurt Thomas (Eds.).

USENIX Association, 753–770.

[10] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer.

2002. Reclaiming Space from Duplicate Files in a Serverless Distributed File

System. In Proceedings of the 22nd International Conference on Distributed Com-

puting Systems (ICDCS’02), Vienna, Austria, July 2-5, 2002. IEEE Computer Society,

617–624. https://doi.org/10.1109/ICDCS.2002.1022312

[11] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean, Jin Li, and Sudipta

Sengupta. 2012. Primary Data Deduplication - Large Scale Study and System

Design. In Proceedings of the 2012 USENIX Annual Technical Conference, USENIX

ATC 2012, Boston, MA, USA, June 13-15, 2012, Gernot Heiser and Wilson C. Hsieh

(Eds.). USENIX Association, 285–296. https://www.usenix.org/conference/atc12/

technical-sessions/presentation/el-shimi

[12] Hugging Face. 2024. Improving Parquet Dedupe on Hugging Face Hub. https:

//huggingface.co/blog/improve_parquet_dedupe

[13] Kai Gellert, Tibor Jager, Lin Lyu, and Tom Neuschulten. 2022. On Fingerprint-

ing Attacks and Length-Hiding Encryption. In CT-RSA 2022 (LNCS, Vol. 13161),

Steven D. Galbraith (Ed.). Springer, Cham, 345–369. https://doi.org/10.1007/978-

3-030-95312-6_15

[14] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable

Website Fingerprinting Technique. In USENIX Security 2016, Thorsten Holz and

Stefan Savage (Eds.). USENIX Association, 1187–1203.

[15] IPFS. [n. d.]. Unix File System (UnixFS). https://docs.ipfs.tech/concepts/file-

systems/#unix-file-system-unixfs

[16] John Kelsey. 2002. Compression and Information Leakage of Plaintext. In FSE 2002

(LNCS, Vol. 2365), Joan Daemen and Vincent Rijmen (Eds.). Springer, Berlin,

Heidelberg, 263–276. https://doi.org/10.1007/3-540-45661-9_21

[17] Abraham Lempel. 1970. On a Homomorphism of the de Bruijn Graph and its

Applications to the Design of Feedback Shift Registers. IEEE Trans. Computers

19, 12 (1970), 1204–1209. https://doi.org/10.1109/T-C.1970.222859

[18] Acrosync LLC. [n. d.]. Duplicacy Homepage. https://duplicacy.com/. Accessed

on 16 Nov 2023.

[19] Dutch T. Meyer and William J. Bolosky. 2012. A study of practical deduplication.

ACM Trans. Storage 7, 4 (2012), 14:1–14:20. https://doi.org/10.1145/2078861.

2078864

[20] Athicha Muthitacharoen, Benjie Chen, and David Mazières. 2001. A Low-

Bandwidth Network File System. In Proceedings of the 18th ACM Symposium

on Operating System Principles, SOSP 2001, Chateau Lake Louise, Banff, Alberta,

Canada, October 21-24, 2001, Keith Marzullo and Mahadev Satyanarayanan (Eds.).

ACM, 174–187. https://doi.org/10.1145/502034.502052

[21] Fan Ni and Song Jiang. 2019. RapidCDC: Leveraging Duplicate Locality to

Accelerate Chunking in CDC-based Deduplication Systems. In Proceedings of the

ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November

20-23, 2019. ACM, 220–232. https://doi.org/10.1145/3357223.3362731

[22] Kirill Nikitin, Ludovic Barman, Wouter Lueks, Matthew Underwood, Jean-Pierre

Hubaux, and Bryan Ford. 2019. Reducing Metadata Leakage from Encrypted

Files and Communication with PURBs. PoPETs 2019, 4 (Oct. 2019), 6–33. https:

//doi.org/10.2478/popets-2019-0056

[23] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-

nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet

Scale. In NDSS 2016. The Internet Society. https://doi.org/10.14722/ndss.2016.

23477

[24] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. 2011. Tag Size

Does Matter: Attacks and Proofs for the TLS Record Protocol. In ASIACRYPT 2011

(LNCS, Vol. 7073), Dong Hoon Lee and Xiaoyun Wang (Eds.). Springer, Berlin,

Heidelberg, 372–389. https://doi.org/10.1007/978-3-642-25385-0_20

[25] Restic. [n. d.]. Chunker Github. https://github.com/restic/chunker. Accessed on

25 Aug 2023.

[26] Restic. 2022. Restic 0.14.0 Released. https://restic.net/blog/2022-08-25/restic-

0.14.0-released/

[27] Restic. 2025. Terminology. https://restic.readthedocs.io/en/stable/design.html#

pack-format

[28] Hubert Ritzdorf, Ghassan Karame, Claudio Soriente, and Srdjan Capkun. 2016.

On Information Leakage in Deduplicated Storage Systems. In Proceedings of the

2016 ACM on Cloud Computing Security Workshop, CCSW 2016, Vienna, Austria,

October 28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Mathias Payer, Stefan

Mangard, Elli Androulaki, and Michael K. Reiter (Eds.). ACM, 61–72. https:

//doi.org/10.1145/2996429.2996432

[29] Juliano Rizzo and Thai Duong. 2012. CRIME attack: CVE-2012-4929. Available

from MITRE, CVE-ID CVE-2012-4929. https://cve.mitre.org/cgi-bin/cvename.

cgi?name=cve-2012-4929

[30] Phillip Rogaway and Thomas Shrimpton. 2006. A Provable-Security Treatment

of the Key-Wrap Problem. In EUROCRYPT 2006 (LNCS, Vol. 4004), Serge Vaudenay

(Ed.). Springer, Berlin, Heidelberg, 373–390. https://doi.org/10.1007/11761679_23

[31] Keegan Ryan and Nadia Heninger. 2023. Fast Practical Lattice Reduction

Through Iterated Compression. In CRYPTO 2023, Part III (LNCS, Vol. 14083),

Helena Handschuh and Anna Lysyanskaya (Eds.). Springer, Cham, 3–36. https:

//doi.org/10.1007/978-3-031-38548-3_1

[32] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padman-

abhan, and Lili Qiu. 2002. Statistical Identification of Encrypted Web Browsing

Traffic. In 2002 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 19–30. https://doi.org/10.1109/SECPRI.2002.1004359

[33] Tong Sun, Bowen Jiang, Borui Li, Jiamei Lv, Yi Gao, and Wei Dong. 2024. SimEnc:

A High-Performance Similarity-Preserving Encryption Approach for Dedupli-

cation of Encrypted Docker Images. In Proceedings of the 2024 USENIX An-

nual Technical Conference, USENIX ATC 2024, Santa Clara, CA, USA, July 10-12,

2024, Saurabh Bagchi and Yiying Zhang (Eds.). USENIX Association, 615–630.

https://www.usenix.org/conference/atc24/presentation/sun

[34] Tarsnap. [n. d.]. Tarsnap Homepage. https://tarsnap.com. Accessed on 16 Nov

2023.

[35] Riot Games Technology. 2019. Supercharging Data Delivery with the New League

Patcher. https://technology.riotgames.com/news/supercharging-data-delivery-

new-league-patcher

[36] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou. 2014. Ddelta:

A deduplication-inspired fast delta compression approach. Perform. Evaluation

79 (2014), 258–272. https://doi.org/10.1016/J.PEVA.2014.07.016

[37] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing

Liu, and Yucheng Zhang. 2016. FastCDC: a Fast and Efficient Content-Defined

Chunking Approach for Data Deduplication. In Proceedings of the 2016 USENIX

Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24,

2016, Ajay Gulati and HakimWeatherspoon (Eds.). USENIX Association, 101–114.

https://www.usenix.org/conference/atc16/technical-sessions/presentation/xia

[38] Zuoru Yang, Jingwei Li, and Patrick P. C. Lee. 2022. Secure and Lightweight Dedu-

plicated Storage via Shielded Deduplication-Before-Encryption. In Proceedings of

the 2022 USENIX Annual Technical Conference, USENIX ATC 2022, Carlsbad, CA,

USA, July 11-13, 2022, Jiri Schindler and Noa Zilberman (Eds.). USENIX Associa-

tion, 37–52. https://www.usenix.org/conference/atc22/presentation/yang-zuoru

[39] Yucheng Zhang, Hong Jiang, Dan Feng, Wen Xia, Min Fu, Fangting Huang, and

Yukun Zhou. 2015. AE: An Asymmetric Extremum content defined chunking

algorithm for fast and bandwidth-efficient data deduplication. In 2015 IEEE

Conference on Computer Communications, INFOCOM 2015, Kowloon, Hong Kong,

April 26 - May 1, 2015. IEEE, 1337–1345. https://doi.org/10.1109/INFOCOM.2015.

7218510

Appendix

A Construction of Conjugate Sequences

Notation. In this section we work with binary sequences, that is

sequences with terms from {0, 1}. Such a sequence 𝑠 = 𝑠0, 𝑠1, . . . is

said to be periodic with period 𝑛 if 𝑠𝑖+𝑛 = 𝑠𝑖 for all 𝑖 ≥ 0; moreover,

𝑠 has least period 𝑛 if 𝑛 is the smallest positive integer such that

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://eprint.iacr.org/2025/532
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/978-3-642-38348-9_18
https://toc.cryptobook.us/
https://borgbackup.readthedocs.io/en/stable/internals/data-structures.html#buzhash-chunker
https://borgbackup.readthedocs.io/en/stable/internals/data-structures.html#buzhash-chunker
https://doi.org/10.1007/978-3-030-01446-9_20
https://doi.org/10.1007/978-3-030-01446-9_20
https://github.com/andrewchambers/bupstash
https://github.com/andrewchambers/bupstash
https://doi.org/10.1109/ICDCS.2002.1022312
https://www.usenix.org/conference/atc12/technical-sessions/presentation/el-shimi
https://www.usenix.org/conference/atc12/technical-sessions/presentation/el-shimi
https://huggingface.co/blog/improve_parquet_dedupe
https://huggingface.co/blog/improve_parquet_dedupe
https://doi.org/10.1007/978-3-030-95312-6_15
https://doi.org/10.1007/978-3-030-95312-6_15
https://docs.ipfs.tech/concepts/file-systems/#unix-file-system-unixfs
https://docs.ipfs.tech/concepts/file-systems/#unix-file-system-unixfs
https://doi.org/10.1007/3-540-45661-9_21
https://doi.org/10.1109/T-C.1970.222859
https://duplicacy.com/
https://doi.org/10.1145/2078861.2078864
https://doi.org/10.1145/2078861.2078864
https://doi.org/10.1145/502034.502052
https://doi.org/10.1145/3357223.3362731
https://doi.org/10.2478/popets-2019-0056
https://doi.org/10.2478/popets-2019-0056
https://doi.org/10.14722/ndss.2016.23477
https://doi.org/10.14722/ndss.2016.23477
https://doi.org/10.1007/978-3-642-25385-0_20
https://github.com/restic/chunker
https://restic.net/blog/2022-08-25/restic-0.14.0-released/
https://restic.net/blog/2022-08-25/restic-0.14.0-released/
https://restic.readthedocs.io/en/stable/design.html#pack-format
https://restic.readthedocs.io/en/stable/design.html#pack-format
https://doi.org/10.1145/2996429.2996432
https://doi.org/10.1145/2996429.2996432
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-4929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-4929
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-031-38548-3_1
https://doi.org/10.1007/978-3-031-38548-3_1
https://doi.org/10.1109/SECPRI.2002.1004359
https://www.usenix.org/conference/atc24/presentation/sun
https://tarsnap.com
https://technology.riotgames.com/news/supercharging-data-delivery-new-league-patcher
https://technology.riotgames.com/news/supercharging-data-delivery-new-league-patcher
https://doi.org/10.1016/J.PEVA.2014.07.016
https://www.usenix.org/conference/atc16/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc22/presentation/yang-zuoru
https://doi.org/10.1109/INFOCOM.2015.7218510
https://doi.org/10.1109/INFOCOM.2015.7218510


Breaking and Fixing Content-Defined Chunking

𝑠𝑖+𝑛 = 𝑠𝑖 for all 𝑖 ≥ 0. A sequence of period 𝑛 is uniquely defined

by its first 𝑛 terms; we write 𝑠 = [𝑠0, 𝑠1, . . . , 𝑠𝑛−1] to denote such a

sequence.

For 𝑢 ≥ 1, let𝑤𝑖 ≔ (𝑠𝑖 , 𝑠𝑖+1, . . . , 𝑠𝑖+𝑢−1) denote a length 𝑢 vector

produced by taking a subsequence of 𝑠 . We say that 𝑠 contains

vector 𝑤𝑖 as a window at position 𝑖 . A sequence 𝑠 of least period

𝑛 is said to have span 𝑢 if the 𝑛 windows 𝑤𝑖 , 0 ≤ 𝑖 < 𝑛, are all

distinct. A sequence of span 𝑢 and period 2
𝑢
is called a span 𝑢 de

Bruijn sequence; clearly such a sequence has the property that every

possible length 𝑢 binary vector occurs exactly once as a window

of 𝑠 . As an example, 𝑠 = [0, 0, 0, 1, 0, 1, 1, 1] is a span 3 de Bruijn

sequence, while 𝑠 = [0, 0, 0, 1, 1, 1] is a span 3 sequence of period 6

that is not a de Bruijn sequence. A span𝑢 de Bruijn sequence can be

seen as a Hamiltonian cycle in the de Bruijn graph of order 𝑢, this

being the graph on 2
𝑢
vertices, each vertex labelled by a bit vector

(𝑤0, . . . ,𝑤𝑢−1) and each such vertex being connected by directed

edges to the vertices (𝑤1, . . . ,𝑤𝑢−1, 0) and (𝑤1, . . . ,𝑤𝑢−1, 1). Thus,
the span 3 de Bruijn sequence 𝑠 = [0, 0, 0, 1, 0, 1, 1, 1] corresponds
to the cycle of vertices in the corresponding graph beginning with

(0, 0, 0), then (0, 0, 1), then (0, 1, 0), and so on, and ending with

vertex (1, 0, 0).
Let 𝑢 ≥ 1 and let 𝑤 = (𝑤0,𝑤1, . . . ,𝑤𝑢−1) be a binary vector of

length 𝑢. We write 𝐶 (𝑤) ≔ (1 + 𝑤0,𝑤1, . . . ,𝑤𝑢−1) for the conju-
gate of𝑤 [17]. Here ’+’ denotes addition modulo 2, so 𝐶 (𝑤) is the
length 𝑢 vector in which the first bit of𝑤 is complemented but the

remaining bits remain the same as those in𝑤 . For example, if 𝑢 = 3

and𝑤 = (0, 0, 0) then 𝐶 (𝑤) = (1, 0, 0).

Problem statement. We are interested in the construction of

periodic binary sequences 𝑠 that, for some 𝑢, have the property that

they contain as length 𝑢 windows many distinct conjugate pairs,

i.e. pairs of the form 𝑤 , 𝐶 (𝑤). Given a target value 𝑢 and target

number of conjugate pairs 𝑡 , we wish to construct an 𝑠 containing

𝑡 distinct conjugate pairs (by which we mean that the 2𝑡 length

𝑢 vectors arising from these 𝑡 pairs are all distinct). We refer to a

period𝑛 sequence 𝑠 with the required properties as being an (𝑛,𝑢, 𝑡)
conjugate sequence. Such a sequence corresponds to a cycle of

length 𝑛 in the order 𝑢 de Bruijn graph, in which 2𝑡 of the vertices

in the cycle are distinct and form 𝑡 conjugate pairs. (We do not care

if the other vertices in the cycle are distinct from each other and

from those arising in the conjugate pairs or not; in our construction,

they will be.)

Notice that a de Bruijn sequence 𝑠 of span 𝑢 is automatically a

(2𝑢 , 𝑢, 2𝑢−1) conjugate sequence, since for every vector𝑤 of length

𝑢, both 𝑤 and 𝐶 (𝑤) arise at some positions in 𝑠; hence such a

sequence contains 2
𝑢−1

conjugate pairs. However, in our attack

we do not necessarily need as many as 2
𝑢−1

conjugate pairs at

the target value of 𝑢. We also wish to minimise the period 𝑛 of

our sequence, since 𝑠 will be used as a chosen plaintext, and we

wish to minimise its bit-length. Thus, a de Bruijn sequence is not

necessarily the ideal solution to our problem. In particular, for our

attack, we require 𝑢 = 34 and 𝑡 ≈ 2
26
.

With this notation established, we can now state the main prob-

lem that we address in this appendix: given target values 𝑢 and

𝑡 construct an (𝑛,𝑢, 𝑡) conjugate sequence 𝑠 whose period 𝑛 is as

small as possible.

There is an additional property that we require: namely, for

every conjugate pair (𝑤,𝐶 (𝑤)) in 𝑠 , we would like the two vectors

𝑤 and𝐶 (𝑤) to be well-separated in 𝑠 , namely if𝑤 and𝐶 (𝑤) appear
at positions 𝑖, 𝑗 in 𝑠 , respectively, then we would like |𝑖 − 𝑗 | > 𝛿

where 𝛿 is a fixed design parameter coming from the specifics of

the Tarsnap chunking algorithm. Since this property is harder to

achieve, we will focus on constructing (𝑛,𝑢, 𝑡) conjugate sequences
𝑠 , and then counting how many of the 𝑡 conjugate pairs in 𝑠 satisfy

this additional property. Let 𝑡𝛿 (𝑠) ≤ 𝑡 denote this number. If 𝑡𝛿 (𝑠) is
still sufficiently large, then the sequence 𝑠 will still be good enough

to use in our attack.

We define the efficiency of an (𝑛,𝑢, 𝑡) conjugate sequence 𝑠 to
be 2𝑡/𝑛. This reflects how densely packed in the sequence the

conjugate pairs are. A de Bruijn sequence has efficiency 2𝑡/𝑛 =

2 · 2𝑢−1/2𝑢 = 1, the maximum possible value.

(Inverse) Lempel homomorphism. Given a binary sequence 𝑠

of period 𝑛, we define the Lempel homomorphism on 𝑠 to be the

sequence 𝑠0 + 𝑠1, 𝑠1 + 𝑠2, 𝑠2 + 𝑠3, . . .. Note that if 𝑠 has period 𝑛, then
its image under the Lempel homomorphism has period dividing 𝑛

(in fact its period is either 𝑛 or 𝑛/2). For example, if 𝑠 = [0, 0, 1, 1]
of period 4, then applying the Lempel homomorphism, we obtain

[0, 1, 0, 1] = [0, 1] of period 2. The Lempel homomorphism can also

be seen as a graph homomorphism from the de Bruijn graph of

order 𝑢 + 1 to the de Bruijn graph of order 𝑢 [17].

We consider the inverse of the Lempel homomorphism and its

effect on sequence period and span. There are two cases:

• If 𝑠 has least period 𝑛 and even weight (i.e. 𝑠0, 𝑠1, . . . , 𝑠𝑛−1
contains an even number of 1’s), then 𝑠 has two pre-images

under the Lempel homomorphism, namely:

0, 𝑠0, 𝑠0 + 𝑠1, 𝑠0 + 𝑠1 + 𝑠2, . . .

and its complement:

1, 1 + 𝑠0, 1 + 𝑠0 + 𝑠1, 1 + 𝑠0 + 𝑠1 + 𝑠2, . . . .

Each pre-image also has least period 𝑛. Moreover, if 𝑠 has

span 𝑢 then the two pre-image sequences have span 𝑢 + 1
and together contain 2𝑛 distinct windows of length 𝑢 + 1.

• If 𝑠 has least period 𝑛 and odd weight, then 𝑠 has a single

pre-image under the Lempel homomorphism, namely:

0, 𝑠0, 𝑠0 + 𝑠1, 𝑠0 + 𝑠1 + 𝑠2, . . .

This pre-image has least period 2𝑛 and is self-complementary

(i.e. its second half is the bitwise complement of the first

half). Moreover, if 𝑠 has span𝑢 then the pre-image has span

𝑢 + 1.
For proofs of these results, see [17].

For example, if 𝑠 = [0, 0, 0, 1, 1, 1] of period 6, span 3 and odd

weight, then its pre-image under the Lempel homomorphism is

[0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1] of period 12 and span 4. On the other

hand, if 𝑠 = [0, 0, 0, 0, 1, 1, 1, 1] of period 8, span 4 and even weight,

then its two pre-images under the Lempel homomorphism are

[0, 0, 0, 0, 0, 1, 0, 1] and [1, 1, 1, 1, 1, 0, 1, 0] both of period 8 and having
(joint) span 5.

Note that if a sequence 𝑠 contains 0𝑢 ≔ (0, 0, . . . , 0) as a window,
then its pre-image(s) (under the Lempel homomorphism) contain



Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

both 0
𝑢+1

and 1
𝑢+1 ≔ (1, 1, . . . , 1) as windows. Moreover if a se-

quence 𝑠 contains 1𝑢 as a window, then its pre-image(s) contain

both (0, 1, 0, 1, . . .) and (1, 0, 1, 0, . . .) as length 𝑢 + 1 windows.
Cycle joining. Let 𝑎 and 𝑏 be two binary, periodic sequences of

periods𝑚 and 𝑛, respectively. Suppose that 𝑎 and 𝑏 together con-

tain𝑚 + 𝑛 distinct windows of length 𝑢, so that both have span 𝑢

and contain disjoint sets of windows. Suppose further that at some

positions 𝑖 and 𝑗 we have 𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑖+𝑢−2 = 𝑏 𝑗 , 𝑏 𝑗+1, . . . , 𝑏 𝑗+𝑢−2.
By the assumed uniqueness of length 𝑢 windows in 𝑎 and 𝑏, we

must then have 𝑎𝑖−1 ≠ 𝑏 𝑗−1 and 𝑎𝑖+𝑢−1 ≠ 𝑏 𝑗+𝑢−1. Hence the win-
dows (𝑎𝑖−1, 𝑎𝑖 , . . . , 𝑎𝑖+𝑢−2) and (𝑏 𝑗−1, 𝑏 𝑗 , . . . , 𝑏 𝑗+𝑢−2) form a conju-

gate pair. Then consider the sequence:

𝑐 = [𝑎0, . . . , 𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑖+𝑢−2,
𝑏 𝑗+𝑢−1, 𝑏 𝑗+𝑢 , . . . , 𝑏𝑛−1, 𝑏0, . . . , 𝑏 𝑗−1,
𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑚−1] .

By inspection, 𝑐 has period𝑚 + 𝑛 and span 𝑢, and contains as its

length 𝑢 windows all the windows of 𝑎 and 𝑏 together.

When viewing sequences of span𝑢 as cycles in a de Bruijn graph

of order 𝑢, this construction can be seen as joining the two cycles

corresponding to 𝑎 and 𝑏 into a single cycle on𝑚 + 𝑛 vertices by

using a so-called cross-join pair of vertices [17].

As an example, consider the pair of sequences𝑎 = [0, 0, 0, 0, 0, 1, 0, 1]
and 𝑏 = [1, 1, 1, 1, 1, 0, 1, 0] of period 8 and (joint) span 5 con-

structed as pre-images of 𝑠 = [0, 0, 0, 0, 1, 1, 1, 1] under the Lem-

pel homomorphism. Notice how 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8 = 0, 1, 0, 1, 0 while

𝑏5, 𝑏6, 𝑏7, 𝑏8, 𝑏9 = 0, 1, 0, 1, 1. We can then join 𝑎 and 𝑏 to make a

sequence 𝑐 of period 16 and span 5:

𝑐 = [0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1] .

In fact, this cycle joining technique, in combination with the

inverse Lempel homomorphism, yields one of the classical con-

struction techniques for de Bruijn sequences: start with a de Bruijn

sequence of order 𝑢, apply the inverse Lempel homomorphism to

obtain two sequences of period 2
𝑢
that jointly contain 2

𝑢+1
distinct

windows of length 𝑢 + 1, and join them using a suitable cross-join

pair to create a single sequence of period 2
𝑢+1

that now contains

2
𝑢+1

distinct windows, that is a de Bruijn sequence of order 𝑢 + 1.
The construction. We have assembled the ingredients necessary

for our construction of conjugate sequences. Our construction is

iterative in nature.

Suppose we have a sequence 𝑠 with the following two properties:

• 𝑠 is an (𝑛,𝑢, 𝑡) conjugate sequence; and
• 𝑠 contains both 0

𝑢
and 1

𝑢
as length 𝑢 windows.

We compute the pre-image(s) of 𝑠 under the Lempel homomor-

phism. Using properties established above, this results in either

one cycle of period 2𝑛 or two cycles of period 𝑛 (in case 𝑠 has

even weight). In either case, since 𝑠 contains 0𝑢 , the constructed

cycle(s) contain(s) 0
𝑢+1

and 1
𝑢+1

as length𝑢+1windows. Moreover

in the second case, because 𝑠 contains 1𝑢 , the constructed cycles

contain the complementary vectors (0, 1, 0, 1, . . .) and (1, 0, 1, 0, . . .)
as length 𝑢 + 1 windows, one in each of the two cycles. Then

the window following (1, 0, 1, 0, . . .) in the relevant cycle must be

(0, 1, 0, 1, . . .) (ending in either two 0 bits or two 1 bits, depending on
the parity of 𝑢). This means that the two cycles meet the necessary

condition to be joined into a single cycle of period 2𝑛. Either way,

we obtain a new sequence 𝑐 of period 2𝑛 containing both 0
𝑢+1

and

1
𝑢+1

.

We claim that 𝑐 is a (2𝑛,𝑢 + 1, 2𝑡) conjugate sequence, that is, 𝑐
contains twice as many length 𝑢 + 1 conjugate pairs as the start-
ing sequence 𝑠 does conjugate pairs of length 𝑢. To see why this

claim holds, consider any conjugate pair (𝑤0,𝑤1, . . . ,𝑤𝑢−1) and
(1 +𝑤0,𝑤1, . . . ,𝑤𝑢−1) in 𝑠 . These two windows result in four dis-

tinct length 𝑢 + 1 windows in 𝑐 , namely:

0,𝑤0,𝑤0 +𝑤1, . . . ,𝑤0 +𝑤1 + · · · +𝑤𝑢−1
1, 1 +𝑤0, 1 +𝑤0 +𝑤1, . . . , 1 +𝑤0 +𝑤1 + · · · +𝑤𝑢−1
0, 1 +𝑤0, 1 +𝑤0 +𝑤1, . . . , 1 +𝑤0 +𝑤1 + · · · +𝑤𝑢−1
1,𝑤0,𝑤0 +𝑤1, . . . ,𝑤0 +𝑤1 + · · · +𝑤𝑢−1

By inspection, the first and fourth of these windows form a conju-

gate pair, as do the second and third. Moreover, because the Lempel

homomorphism is a 2-to-1 map, we are assured that the 𝑡 distinct

conjugate pairs in 𝑠 (consisting of 2𝑡 distinct length 𝑢 vectors) lead

to 2𝑡 distinct conjugate pairs in 𝑐 (consisting of 4𝑡 distinct length

𝑢 + 1 vectors).
In summary, from 𝑠 satisfying the two properties above, we have

constructed 𝑐 also satisfying those properties, but with 𝑢 replaced

by 𝑢 + 1 and 𝑠 , an (𝑛,𝑢, 𝑡) conjugate sequence, being replaced by 𝑐 ,

a (2𝑛,𝑢 + 1, 2𝑡) conjugate sequence. Notice that the efficiency of 𝑐

is 2 · 2𝑡/2𝑛 = 2𝑡/𝑛, which is the same as that of 𝑠 . In other words,

the construction preserves efficiency.

All that remains is to identify suitable starting sequences for the

construction. Consider the sequence 𝑠 = [0𝑢1𝑢 ] (consisting of 𝑢

0’s followed by 𝑢 1’s in its least period). This 𝑠 clearly satisfies the

second condition, and by inspection, contains 2 conjugate pairs,

namely 0
𝑢 , 10𝑢−1 and 1

𝑢 , 01𝑢−1. Thus it is a (2𝑢,𝑢, 2) conjugate
sequence, with efficiency 2 · 2/2𝑢 = 2/𝑢.

Thus, for example, starting with 𝑢 = 9 and a (2 · 9, 9, 2) conjugate
sequence, we can apply the above construction 34 − 9 = 25 times

to obtain a (226 · 9, 34, 226) conjugate sequence 𝑠 , i.e. a sequence of
period 2

26 · 9 containing 2
26
conjugate pairs of length 34 vectors.

This sequence is sufficient for our attack on Tarsnap in Section 3.5:

the relevant value of 𝑡𝛿 (𝑠) is (by direct computation) about 0.88 · 226
and this suffices for our attack on Tarsnap to have a reasonable

success rate.

B Relations Between Security Notions

Wenow show that the two security notions FSWC-FtG and FSWC-RoR

are asymptotically equivalent.We begin by proving that FSWC-RoR⇒
FSWC-FtG with a tight reduction.

Theorem B.1 (RoR implies FtG). Let Chk be a FSW chunking

algorithm. For all adversariesA in the FSWC-FtG game against Chk
and making 𝑞 queries to its oracle, there exists adversaries B0 and B1
such that

Adv
FSWC-FtG

Chk (A)
≤ Adv

FSWC-RoR

Chk (B0) + AdvFSWC-RoR

Chk (B1)
making 𝑞 queries to its oracle and running approximately in the

same time.

Proof. We proceed through a sequence of games, depicted in

Fig. 6. Informally, the games are as follows:



Breaking and Fixing Content-Defined Chunking

• Game 𝐺0: The case 𝑏 = 0 for the Find-then-Guess game.

• Game 𝐺1: The Find-then-Guess game, where the oracle

instead replies with a randomly sampled decision for both

the find and guess phases.

• Game 𝐺2: The case 𝑏 = 1 for the Find-then-Guess game.

The advantage of the adversary in the FSWC-FtG game is:

Adv
FSWC-FtG

Chk
(A) = |Pr[𝐺2] − Pr[𝐺0] |

≤ |Pr[𝐺2] − Pr[𝐺1] | + |Pr[𝐺1] − Pr[𝐺0] |
We claim that each term can be upper bounded by the advantage

of an adversary (B0 and B1, respectively) in the FSWC-RoR game.

Bounding Pr[𝐺1] − Pr[𝐺0]. We construct adversary B0, simulat-

ing all queries forA. To do so, it relays all queries to its own oracle

and outputs the same bit 𝑏′ as A. Depending on the hidden bit 𝑏

of the oracle, A plays in 𝐺0 (case 𝑏 = 0) or 𝐺1 (case 𝑏 = 1). The

advantage of B0 is as follows:

Adv
FSWC-RoR

Chk
(B0) =

= | Pr[𝑏′ = 0|𝑏 = 1] − Pr[𝑏′ = 0|𝑏 = 0] | =
= |Pr[𝐺1] − Pr[𝐺0] |

Bounding Pr[𝐺2] − Pr[𝐺1]. Similarly, we construct adversary

B1, simulating all oracle queries for the find phase by relaying them

to its own oracle. For the guess phase, it samples a random bit 𝑑

and outputs it. In the end, it outputs the same bit 𝑏′ as A. The

advantage of B1 is as follows:

Adv
FSWC-RoR

Chk
(B1) =

= | Pr[𝑏′ = 0|𝑏 = 1] − Pr[𝑏′ = 0|𝑏 = 0] | =
= |Pr[𝐺1] − Pr[𝐺2] | = |Pr[𝐺2] − Pr[𝐺1] |

Plugging in the upper bounds concludes the proof.

□

The other direction is more involved and leads to a non-tight

relationship between the two notions.

Theorem B.2 (FtG implies RoR). Let Chk be a FSW chunking

algorithm. For any adversary A be an adversary that has advantage

𝜀 in the FSWC-RoR game against Chk and making 𝑞 queries to its

oracle. Then, there exists an adversary A′ that has advantage 𝜀
𝑞
in

the FSWC-FtG game against Chk, making at most 𝑞 queries to its

oracle and running approximately in the same time.

Proof sketch. The proof relies on a hybrid argument.We begin

with the FSWC-RoR game in the case 𝑏 = 1 (𝐺0), where each query

is answered by sampling a random decision. In game 𝐺𝑖 for 𝑖 ∈
1, . . . , 𝑞, queries up to the 𝑖-th are answered by the real chunker

and the remainder are answered by sampling a random decision. In

the end, game𝐺𝑞 corresponds to the FSWC-RoR game in the case

𝑏 = 0.

The difference in advantage of adversary A in transition from

game𝐺𝑖 to𝐺𝑖+1 is upper bounded by the advantage of an adversary

B𝑖 in the FSWC-FtG game. The adversary B𝑖 relays the first 𝑖

queries from A to its find oracle. The 𝑖 + 1-th query is answered

using the challenge response in the guess phase. Depending on the

hidden bit of the Find-then-Guess game, A is playing in either𝐺𝑖

Game 𝐺0:

1 𝑆 ← ∅
2 𝐾 ←$ Chk.KGen()
3 (𝑊 ∗, st) ←$AOreal (find)
4 𝑑 ← Chk.WindowEval(𝐾,𝑊 ∗)
5 𝑏′ ←$A(guess, 𝑑, st)
6 Return 𝑏′ = 𝑏 ∧𝑊 ∗ ∉ 𝑆
Game 𝐺1:

1 𝑆 ← ∅
2 (𝑊 ∗, st) ←$AOrandom (find)
3 𝑑 ←$ Ber(𝜆−1)
4 𝑏′ ←$A(guess, 𝑑, st)
5 Return 𝑏′ = 𝑏 ∧𝑊 ∗ ∉ 𝑆
Game 𝐺2:

1 𝑆 ← ∅
2 𝐾 ←$ Chk.KGen()
3 (𝑊 ∗, st) ←$AOreal (find)
4 𝑑 ←$ Ber(𝜆−1)
5 𝑏′ ←$A(guess, 𝑑, st)
6 Return 𝑏′ = 𝑏 ∧𝑊 ∗ ∉ 𝑆
Oracle Oreal (𝑊 ):
1 𝑆 ← 𝑆 ∪ {𝑊 }
2 𝑑 ← Chk.WindowEval(𝐾,𝑊 )
3 Return 𝑑

Oracle Orandom (𝑊 ):
1 𝑆 ← 𝑆 ∪ {𝑊 }
2 𝑑 ←$ Ber(𝜆−1)
3 Return 𝑑

Figure 6: The sequence of games for the proof of TheoremB.1.

Code in gray prevents trivial wins.

(𝑏 = 1) or 𝐺𝑖+1 (𝑏 = 0) which proves the advantage bound for each

transition.

We thus prove the stated advantage bound

Adv
FSWC-RoR

Chk
(A) ≤ 𝑞 · AdvFSWC-FtG

Chk
(B) .

□

C Proof Details: Chk-PHTE is

FSWC-RoR-secure

Fig. 7 shows the code for Chk-PHTE in each game game hop of the

proof of Theorem 4.5.

D UHF Security of Restic’s Polynomial Hashing

The following lemma shows that Restic’s polynomial hash is a

2
−44

-universal hash function.

Lemma D.1. LetH𝑃 be the family of polynomial hash functions

used in Restic which consists of functions reducing binary polynomials



Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, and Kenneth G. Paterson

Game 𝐺0

Chk.KGen():
1 𝐾poly ←$ F
2 𝐾E ←$ {0, 1}𝑘
3 Return (𝐾poly, 𝐾E)

Chk.WindowEval(𝐾,𝑊 = (𝐵0, . . . , 𝐵𝑤−1)):
1 (𝐾poly, 𝐾E) ← 𝐾

2 𝑢 ← ∑𝑤−1
𝑖=0 btof(𝐵𝑖 ) · 𝐾𝑤−1−𝑖

poly

3 𝑐 ← E(𝐾E,ftob(𝑢))
4 If 𝑐 mod 𝜆 = 0: Return 1

5 Else: Return 0

Game 𝐺1

Chk.KGen():
1 𝐾poly ←$ F
2 𝑓 ←$ Funcs[{0, 1}𝑛, {0, 1}𝑛]
3 Return (𝐾poly, 𝑓 )

Chk.WindowEval(𝐾, (𝐵0, . . . , 𝐵𝑤−1)):

1 (𝐾poly, 𝑓 ) ← 𝐾

2 𝑢 ← ∑𝑤−1
𝑖=0 btof(𝐵𝑖 ) · 𝐾𝑤−1−𝑖

poly

3 𝑐 ← 𝑓 (ftob(𝑢))
4 If 𝑐 mod 𝜆 = 0: Return 1

5 Else: Return 0

Game 𝐺 ′
2

Chk.KGen():
1 𝐾poly ←$ F
2 Return 𝐾poly

Chk.WindowEval(𝐾, (𝐵0, . . . , 𝐵𝑤−1)):

1 𝐾poly ← 𝐾

2 𝑢 ← ∑𝑤−1
𝑖=0 btof(𝐵𝑖 ) · 𝐾𝑤−1−𝑖

poly

3 𝑐 ←$ {0, 1}ℓ
4 If 𝑐 mod 𝜆 = 0: Return 1

5 Else: Return 0

Game 𝐺2

Chk.KGen():
1 𝐾poly ←$ F
2 Return 𝐾poly

Chk.WindowEval(𝐾, (𝐵0, . . . , 𝐵𝑤−1)):
1 𝐾poly ← 𝐾

2 𝑢 ← ∑𝑤−1
𝑖=0 btof(𝐵𝑖 ) · 𝐾𝑤−1−𝑖

poly

3 𝑑 ←$ Ber(𝜆−1)
4 Return 𝑑

Figure 7: The sequence of games for the security proof of the FSW chunking algorithm. The highlighted parts are the changes

made in each game wrt. the previous one. All the code of the challenger and oracle is unchanged across all games.

of degree at most 511 modulo an irreducible polynomial 𝑃 of degree

53. ThenH𝑃 is a 2
−44

-universal hash function family.

Proof. Let K be the key space containing all
2
53−2
53

irreducible

binary polynomials of degree 53. For any distinct binary polynomi-

als 𝐴, 𝐵 of degree at most 511, we have

Pr

𝑃←$K
[H𝑃 (𝐴) =H𝑃 (𝐵)] = Pr

𝑃←$K
[𝑃 divides 𝐴 − 𝐵]

≤
⌊
deg(𝐴 − 𝐵)
deg(𝑃)

⌋
· 1

|K | ≤
⌊
511

53

⌋
· 53

2
53 − 2 ≤ 2

−44

Here, the first inequality follows from𝐴−𝐵 having atmost

⌊
deg(𝐴−𝐵)
deg(𝑃 )

⌋
distinct factors of degree deg(𝑃). Plugging in the parameters of

Restic and observing that deg(𝐴 − 𝐵) is bounded by the maximum

of the degrees of 𝐴 and 𝐵, the result follows. □


	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Ethical Considerations
	1.4 Structure of the Paper

	2 Background
	2.1 Notation and Conventions
	2.2 Keyed Content-Defined Chunking

	3 Key Recovery Attacks
	3.1 Borg
	3.2 Bupstash
	3.3 Duplicacy
	3.4 Restic
	3.5 Tarsnap

	4 Secure Chunking
	4.1 FSW Chunking and its Security
	4.2 Poly-hashing-then-Encrypt Construction
	4.3 Patching Restic and Benchmarking

	5 Discussion
	6 Conclusion
	References
	A Construction of Conjugate Sequences
	B Relations Between Security Notions
	C Proof Details: Chk-PHTE is FSWC-RoR-secure
	D UHF Security of Restic's Polynomial Hashing

